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ABSTRACT

A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix

quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of

starting heights z9 for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient

matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within

100 m of the surface. This finding clarifies which initial height to use when calculating convective available

potential energy from soundings of the tropical troposphere.

1. Introduction

A transilient matrix b for a convecting fluid describes

the vertical transport of mass by eddies. Each column of

the matrix corresponds to an initial height and each row

corresponds to a final height: the element bij describes

the amount of mass transported from zj to zi. If this

matrix can be diagnosed for a convecting fluid, it can

provide valuable information on the transilient (i.e.,

nonlocal) transport by eddies.

a. Methods of diagnosing b

A transilient matrix was first defined for convection by

Stull (1984) [see also the review by Stull (1993)]. As

originally defined, the element bij is proportional to the

mass of air transported from zj at t 5 0 to zi at t 5 Dt (per

infinitesimal intervals around zi and zj). As such, b is

a function of the time interval Dt. In a numerical simula-

tion, bij is easily diagnosed using a ‘‘set-and-go’’ method

with tracers: initialize a horizontally uniform tracer qj at

t 5 0 in the layer containing zj, run the simulation until t 5

Dt while advecting the tracer passively, and then set bij

proportional to the average concentration of qj in the layer

containing zi. By using a tracer for every level, the entire

matrix can be diagnosed in one simulation.

Although the set-and-go method is straightforward, it is

not well suited to discerning the origins and destinations of

convective eddies. If Dt is chosen to be comparable to or

shorter than the lifetime of a convective eddy, then bij will

have significant contributions from eddies that were only

passing through zj at t 5 0 or passing through zi at t 5 Dt.

On the other hand, if Dt is chosen to be comparable to or

larger than the lifetime of a convective eddy, then layers

other than zj will become significantly polluted by qj, which

will cause bij to have contributions from eddies arriving

at zi but coming from layers other than zj.

This paper introduces a way to diagnose b that avoids

these problems. The method uses radioactive tracers

that are continuously injected at their respective heights

and that decay away with some time scale t; we may

refer to this method as ‘‘inject-and-decay.’’ The steady-

state profiles of the tracers are arranged in a matrix that

is inverted to obtain the transilient matrix. This transil-

ient matrix can then be used to answer several questions

about convection. In a simulation of moist convection, it

can tell us where in the boundary layer cumuli originate.

b. Importance of cloud origin

The calculation of convective available potential en-

ergy (CAPE) often depends sensitively on the height of

origin used for the lifted parcel (Williams and Renno
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1993; Mapes and Houze 1992; Smith 1997; Kingsmill and

Houze 1999). This sensitivity is caused by the fact that

the equivalent potential temperature ue need not be well

mixed within the mixed layer even though the virtual

potential temperature uy is. To deal with the ambiguity

of initial height, a common approach has been to cal-

culate CAPE using a parcel with the average mixed-

layer potential temperature and specific humidity (e.g.,

Bluestein and Jain 1985; Kingsmill and Houze 1999). If,

however, cumuli draw their mass preferentially from a

surface layer where ue is higher than the mixed-layer

average, then these approaches will underestimate the

‘‘true’’ CAPE.

The details of cloud origin are also relevant to theories

of the triggering of moist convection. Current lines of

research have begun to parameterize the dry thermals

that become convecting clouds (e.g., Cheinet 2003;

Siebesma et al. 2007; Neggers et al. 2009). An important

input into these models is how much air the thermals

entrain as they rise from the surface to the lifting con-

densation level (LCL). The thermal’s entrainment rate

affects the probability that a newborn cumulus will have

the kinetic energy and buoyancy to reach its level of free

convection.

c. Evidence on cloud origin

It is well known that cumuli are formed by thermals

fed from plumes rising off the surface. In a cumulus-

topped boundary layer, glider pilots, hang gliders, par-

agliders, and pilots of model gliders are often able to ride

an individual updraft from near the surface to the base

of a newborn cumulus (Wallington 1961; Reichmann

1978; Pagen 1995; Rennó and Williams 1995). What is

less certain is what fraction of a newborn cumulus origi-

nates from the surface as opposed to having been en-

trained by the thermal from other heights in the subcloud

layer. This leads us to our main research question: what

fraction of an average newborn cumulus is composed of air

transported to the cloud base directly from a surface layer?

In observations (Crum et al. 1987; Raymond 1995)

and in cloud-resolving models (CRMs) (Kuang and

Bretherton 2006; Romps and Kuang 2010a), the ther-

modynamic properties of thermals and cumuli at the top

of the boundary layer are very similar to the thermo-

dynamic properties of surface air. The most likely ex-

planation for this is that thermals transport surface air

almost undiluted to the top of the boundary layer. An

alternative explanation, however, is that thermals leave

the surface with higher-than-average heat and moisture

and then entrain enough air during their journey to re-

duce their thermodynamic properties to the surface-air

mean. Another line of evidence—comparing observed

cloud-base heights to the theoretical LCL of surface

air—has produced mixed results. In some studies, the

cloud base was found to agree with the LCL of undiluted

surface air (Wilde et al. 1985; Stull and Eloranta 1985),

while another study found the cloud base to agree with

the LCL for air taken equally from all heights in the

subcloud layer (Craven et al. 2002).

The use of Lagrangian particles in cloud-resolving

simulations has also yielded mixed results. In a 3D

simulation of shallow trade-wind cumuli, Heus et al.

(2008) studied the vertical distribution of particles half

an hour prior to being observed in a cloud at 1000 m

(third panel of their Fig. 6). Of the particles that were

below the 500-m cloud base half an hour before, 30%

were below 100 m; this suggests an important, but not

dominant, role for near-surface air. In another study

using Lagrangian particles, Lin (1999) defined the orig-

ination height for a particle as the height where the

particle’s vertical velocity was smaller than 0.0125 m s21

for eight consecutive minutes. In a 2D simulation of shal-

low trade-wind cumuli, it was found that, of the particles in

convecting clouds that originate from below the cloud

base, about 60% of them originate from below 100 m (Lin

1999, his Fig. 4d). But, when the same methodology was

applied to a 2D simulation of deep convection, no pref-

erence was found for subcloud particles to originate from

below 100 m (Lin 1999, his Fig. 7d). One possibility for this

discrepancy is that the 0.0125 m s21 threshold is too sen-

sitive for deep convection, in which downdrafts and cold

pools frequently disturb the boundary layer.

d. Outline of paper

The theory of the transilient matrix and the inject-and-

decay method for diagnosing it are introduced in sec-

tion 2. In section 3, low-resolution simulations are used

to assess various properties of the transilient matrix,

including the effect of the advection scheme and the

matrix’s invariance with respect to the time scale for

tracer decay. Section 4 presents high-resolution simu-

lations, which reveal that the majority of subcloud air in

cumuli originates from within 100 m of the surface. The

transilient matrix used to obtain these results is com-

pared to the transilient matrix of Stull (1984) in section

5. Section 6 summarizes the results and discusses ap-

plications.

2. Theory

We wish to describe fluid flow with a transilient func-

tion b(z, z9) that gives the mean advective mass flux from

z9 to z. This function is useful for two important reasons,

among others. First, it reveals where large eddies begin

and end, which is relevant for the construction of con-

vective parameterizations. Second, it can predict the
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convective redistribution of tracers without the need for

explicit simulation.

We begin by defining ~b(z, z9) as the flux of mass from

z9 to z due to individual large eddies, which is a non-

negative quantity. This has dimensions of mass per time,

per horizontal area, per height interval around z9, and

per height interval around z (kg m24 s21). Here, an

‘‘eddy’’ is any fluid motion whose advective time scale is

short compared to the time scales of interest. A ‘‘large’’

eddy is any eddy whose vertical extent is large enough

that it acts nondiffusively on the tracers of interest; we

could refer to this synonymously as a transilient eddy.

We refer to all other eddies as ‘‘small’’ eddies. The effect

of a small eddy on the relevant tracers is simply to dif-

fuse the tracers in the vertical; we could also refer to this

as a diffusive eddy. The vertical scale that distinguishes

between large and small eddies is the vertical scale of

features whose transport we wish to study. Later, when

we discretize the transilient matrix, this vertical scale is

implicitly chosen to be the discretization length.

In the moist atmosphere, we are often interested in

the transport of chemical tracers whose sources and

sinks act on time scales much longer than the advective

time scales of moist convective updrafts, moist convec-

tive downdrafts, and eddies in clear-air turbulence. In

addition, atmospheric tracers typically have mean pro-

files that vary vertically on length scales that are large

compared to the depth of clear-air eddies, which are

confined vertically by static stability. Therefore, we can

identify moist convective updrafts and downdrafts as

large (i.e., transilient) eddies and the motions in clear-air

turbulence as small (i.e., diffusive) eddies.

Now, consider a passive scalar with a mixing ratio q in

a convecting fluid. Let us assume that three conditions

are satisfied:

1) the fractional area of large eddies is much less than

one,

2) the large eddies begin with the average q from their

height of origin, and

3) the sources and sinks of q act on time scales much

longer than the large-eddy advective time scales.

As shown in the appendix, these conditions allow us to

write the vertical convergence and advection of q in

terms of ~b:

2
›

›z
qrw(z) 5

ð
dz9 ~b(z, z9)[q(z9) 2 q(z)]

2 M(z)
›

›z
q(z) 1

›

›z

�
k(z)

›

›z
q(z)

�
, (1)

where an overbar denotes an average over x, y, and t.

The compensating mass flux M is defined as

M(z) [

ðz

0
dz0

ð‘

z
dz9 ~b(z0, z9) 2

ð‘

z
dz0

ðz

0
dz9 ~b(z0, z9) (2)

because the first term on the right is the eddy flux from

above z to below z and the second term is the eddy flux

from below z to above z. The diffusivity k is the turbu-

lent diffusivity effected by the small eddies. Equation (1)

has a straightforward interpretation. The first term on

the right-hand side describes the displacement of q(z)

with the q(z9) brought in by large eddies starting at z9

and ending at z. The second term describes the advec-

tion of q by compensating subsidence. The third term

describes the diffusion of q by small eddies.

The transilient function is defined as

b(z, z9) [ ~b(z, z9) 2 d(z 2 z9)

ð
dz0 ~b(z0, z)

1M(z9)
›

›z9
d(z 2 z9)1

›

›z9

�
k(z9)

›

›z9
d(z 2 z9)

�
,

(3)

where d is the Dirac delta function. The terms on the

right-hand side describe the net source of mass at z due

to four effects: individual large eddies arriving at z from

z9, large eddies leaving z for all possible z0, compen-

sating subsidence, and turbulent diffusion by small

eddies. As shown in the appendix, the vertical fluxes of

q are related to b and q by

2
›

›z
qrw(z) 5

ð
dz9 b(z, z9)q(z9). (4)

It is also shown in the appendix that b conserves mass.

In particular, the net sink of mass at z9 (due to motions

going to all possible z destinations) is zero:ð
dz b(z, z9) 5 0. (5)

This guarantees that the integral over z of the right-hand

side of Eq. (4) is zero, just like the left-hand side. Also,

the net source of mass at z (due to motions leaving from

all possible z9 origins) is zero:ð
dz9 b(z, z9) 5 0. (6)

This guarantees that, if q is replaced by a constant, the

right-hand side of Eq. (4) is zero, just like the left-hand

side.

Using a set of radioactive tracers in a cloud-resolving

simulation, we can diagnose a discretized version of the

transilient function (i.e., the transilient matrix). Con-

sider a set of n radioactive tracers with mixing ratios
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fqk; k 5 1, . . . , ng. Each tracer will be given its own time-

independent source Sk(z) and will decay with a time

scale t. The governing equation for the kth tracer is

›

›t
(qkr) 1 $ � (qkru) 5 Sk 2 qkr/t.

Averaging over x, y, and time, this equation reduces to

›

›t
(qkr) 5 Sk 2 rqk/t 2

›

›z
qkrw,

where the average is denoted by an overbar. If the three

previously listed conditions are satisfied, then we can use

Eq. (4) to write this as

›

›t
(qkr) 5 Sk 2 rqk/t 1

ð
dz9b(z, z9)qk(z9). (7)

Let us now choose a vertical grid fzi; i 5 1, . . . , ng and an

associated set of grid spacings fDi; i 5 1, . . . , ng. Defining

ri 5 r(zi), bij 5 b(zi, zj), qik 5 qk(zi), and Sik 5 Sk(zi), we

can approximate Eq. (7) as

›

›t
(riqik) 5 Sik 2 riqik/t 1 �

j
Djbijqjk. (8)

Solving for bij gives

bij 5
1

Dj

�
k

�
›

›t
(riqik) 1

riqik

t
2 Sik

�
(q21)kj, (9)

where q21 is the matrix inverse of q.

The q and b matrices have straightforward interpre-

tations, as shown in Fig. 1. Row i of the q matrix contains

the mean tracer values at level i. Column j is the mean

profile of tracer j. Roughly speaking, each row of b tells

us where air at a specific level originated, and each

column tells us where air from a specific level is destined

to go. More precisely, row i gives the sources (due to

large eddies, small eddies, and compensating subsidence)

at level i binned by origin. Similarly, column j gives the

sinks at level j binned by destination.

This definition of the transilient matrix does not suffer

from the ‘‘convective structure memory’’ (Ebert et al.

1989; Stull 1993; Sobel 1999; Larson 1999) that hampers

the definition used by Stull (1984). If we define the

matrix fij [ Djbij/ri, then eDtf is the matrix operator that

evolves a horizontally averaged profile of a conserved

tracer forward in time by Dt. In other words, the vector

(i.e., discretized profile) of tracer values qi(t 1 Dt) is

related to qi(t) by

qi(t 1 Dt) 5 �
j

(eDtf)ijqj(t).

If qi has sources Qi(t), this generalizes to

q(t 1 Dt) 5 eDtfq(t) 1

ðt1Dt

t
dt9e(t1Dt2t9)fQ(t9),

where, to avoid clutter, the indices and summation are

implicit. If Q is time independent, then this becomes

q(t 1 Dt) 5 eDtfq(t) 1 (eDtf 2 1)f21Q,

where f21 is the matrix inverse of f. See section 6 for

further comparison of this transilient matrix and the one

defined by Stull (1984).

3. Low-resolution runs

Simulations are performed using the fully compress-

ible cloud-resolving model called Das Atmosphärische

Modell (DAM) (Romps 2008). The finite-volume advec-

tion scheme uses the three-dimensional Uniformly Third-

Order Polynomial Interpolation Algorithm (UTOPIA)

(Leonard et al. 1993) combined with the three-dimensional,

monotonic flux limiter of Thuburn (1996). All variables are

stored as double precision, and all prognostic variables are

conserved by the finite-volume scheme to within roundoff

error. For microphysics, DAM uses the six-class Lin–

Lord–Krueger scheme (Lin et al. 1983; Lord et al. 1984;

FIG. 1. The q matrix equals the mean tracer values and the

transilient matrix b equals the sources and sinks of air (due to large

eddies, small eddies, and compensating subsidence) binned by or-

igin and destination.
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Krueger et al. 1995) and, for radiation, it uses the fully

interactive Rapid Radiative Transfer Model (RRTM)

(Clough et al. 2005; Iacono et al. 2008). The top-of-

atmosphere downwelling shortwave flux is set to

572 W m22 incident at a zenith angle of 438. This pro-

vides the average 1 January equatorial insolation using

a zenith angle whose cosine is equal to its insolation-

weighted average on that day. The computational domain

is three-dimensional with a doubly periodic boundary

condition in the horizontal. The surface fluxes are param-

eterized with a bulk-flux scheme. Since there is no mean

advection in these simulations, a 5 m s21 eastward velocity

is added to the local wind speed when calculating the bulk

fluxes in order to simulate the flux enhancement from large-

scale flow. The sea surface temperature is set to 300 K.

Several simulations are performed, all of which use

the setup just described. The simulations differ in only

three respects: grid size, duration, and tracer decay time.

The first simulation, designed as a proof of concept, has

a cubic domain that is 32 km wide. The grid spacing is

relatively coarse, with a 2-km horizontal grid spacing

and 64 vertical levels with a spacing ranging from 75 m

near the surface to 500 m in the upper troposphere.

Higher-resolution simulations are described in section 4.

Since there are 64 vertical levels in this simulation, there

are 64 radioactive tracers, each injected at its respective

level. Each tracer is given a decay time of t 5 24 h. The

simulation is run for 1 month and the first 10 days are

discarded as spinup time. The tracer profiles are aver-

aged over the remaining days and plugged into Eq. (9) to

calculate bij.

a. Near-diagonal terms

In both the qij and bij matrices, the largest elements

are clumped in a band around the diagonal. This band is

shaped by small eddies, but also by gravity waves and

numerical diffusion. To check that our main results are

insensitive to the numerics, all simulations have been

run twice: once advecting the tracers with a first-order

upwind scheme, and once advecting the tracers using the

third-order UTOPIA scheme with the Thuburn flux

limiter. Only the advection scheme for the tracers differs

between the two runs; physical variables are always

advected using the UTOPIA/Thuburn scheme.

We might guess that the diagonal bands in q and b are

formed primarily by vertical diffusion. Ignoring large eddies

and compensating subsidence, the effective 1D equation for

a diffusive, radioactive tracer injected at z0 is

r
›

›t
q 5 sd(z 2 z0) 2 rq/t 1 rk

›2

›z2
q, (10)

which can be written in terms of a transilient matrix:

b(z, z9) 5 rk
›2

›z2
d(z 2 z9).

The discretized version of the transilient term is

�
j

Dbijqj 5
rk

D2
(qi21 2 2qi 1 qi11),

so the rows of b have the form

bid
5

rk

D3
(0, . . . , 0, 1,22, 1|fflfflffl{zfflfflffl}

i21,i,i11

, 0, . . . , 0). (11)

The steady-state solution to Eq. (10) is

q 5
s

2r

ffiffiffiffi
t

k

r
e2jz2z

0
j/
ffiffiffiffi
tk
p

. (12)

Given z0, s, r, and t, there is only one free parameter: the

vertical diffusivity k. In fact, by comparing the q and b

matrices diagnosed from the CRM to the theoretical

predictions in Eqs. (11) and (12), we can read off the

vertical diffusivity in the CRM.

Figure 2 compares columns of the q matrix to Eq. (12)

and rows of the b matrix to Eq. (11). The solid lines in the

top panels show the column of q that is equal to the

FIG. 2. Using (left) first-order and (right) third-order advection,

(top) the solid curve shows the column of the q matrix equal to the

mean profile of the tracer injected at 6.4 km; the y axis is loga-

rithmic. (bottom) The solid curve shows the corresponding row of

b, which equals the sources of air at 6.4 km binned by origin; the y

axis is linear from 0 to 1029 and logarithmic from 1029 to 1027, and

similarly for the negative half of the axis. Dashed curves show the

predictions from Eqs. (11) and (12).
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profile of the tracer injected at 6.4 km. The solid lines in the

bottom panels show the corresponding row of the transil-

ient matrix, which equals the sources of air at 6.4 km bin-

ned by origin. To make visible the very small oscillations in

b, the ordinate comprises two log axes with a linear axis in

between. The results in the left (right) panels were gener-

ated with the first-order (third-order) advection scheme.

There are three ways to estimate the vertical diffusivity

from these profiles. We can use the peak value of the

mixing ratio q, the three middle elements of the corre-

sponding bid, or the slope of the log of q:

k 5 t

�
s

2rq(z0)

�2
,

k 5
D3

4r
�
i11

j5i21
jbijj ,

k 5
1

t

���� ›

›z
logq

����
2

.

For the first-order advection, the value of k calculated in

these three ways ranges from 14 to 19 m2 s21. For the

third-order advection, k 5 7–9 m2 s21. These are within

the wide range of estimated diffusivities for the tropo-

sphere (e.g., Table 1 in Wilson 2004).

The dashed lines in Fig. 2 plot Eqs. (11) and (12) with k

chosen as the mean of the three estimates. With first-order

advection, we see that the profile of q closely matches

the expected exponential decay and the row of b closely

resembles the diffusion operator. With third-order ad-

vection, the tracer decays more rapidly than exponential.

A consequence of this nonexponential decay is the more

complicated structure of the transilient matrix, which

corresponds to an operator with higher-order derivatives

in addition to second-order diffusion. We also see that q

is higher below the injection point than above, which is

caused by compensating subsidence.

b. Off-diagonal terms

The parts of the transilient matrix that are of most

interest to us are the off-diagonal terms corresponding

to large eddies (i.e., convective clouds). Figure 3 shows

the base-10 logarithm of the elements of b (kg m24 s21).

The abscissa corresponds to the origin of the eddies and

the ordinate corresponds to the destination of the eddies.

For example, we can read off that the mass flux in eddies

originating between 1000 and 1001 m and ending be-

tween 7000 and 7001 m is about 10210 kg m22 s21.

The most striking feature of Fig. 3 is the leftmost col-

umn, which corresponds to convective eddies that begin

in the first layer (0–75 m) and end between 2 and 16 km.

This column contains the largest elements away from the

diagonal. The relative statistical error in Fig. 3 is about

10% or less, so this feature is statistically robust. In fact,

the flux from that first layer is so large that it dominates

the transport out of the subcloud layer. Of course, this

simulation uses a very coarse vertical grid, so this result is

explored at much higher resolution in section 4.

c. Independence of t

As stated in section 1 and shown in the appendix, Eq. (9)

gives the transilient matrix when t of the tracers is large

FIG. 3. Part of the transilient matrix b obtained using (left) third-order and (right) first-order advection in the low-

resolution simulation. The colors and contours map out the base-10 logarithm of the matrix elements (kg m24 s21).

For example, the mass flux in large eddies originating between 1000 and 1001 m and ending between 7000 and 7001 m

is about 10210 kg m22 s21. White areas are outside the bounds of the color bar.
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compared to the lifetime of eddies. In moist convection,

the lifetimes of clouds are on the order of 1 h, so bij should

be independent of t so long as t is much greater than an

hour. When t is comparable to an hour, Eq. (9) should give

a matrix that is dependent on t and no longer equal to the

true transilient matrix.

To test this, a 2-month simulation is performed using

t 5 48 h. Month-long simulations are also run using t 5

24, 12, 6, 3, 1.5, and 0.75 h. Figure 4 shows the fractional

differences between the bij calculated from these runs

and the 48-h run. We see that bij changes very little over

the first few halvings of t, but it diverges significantly for

t 5 1.5 and 0.75 h. This confirms the invariance of bij for

t much larger than 1 h and the divergence of bij from the

true transilient matrix for t comparable to 1 h.

4. High-resolution runs

The most striking result from the previous section is

that the air convecting out of the boundary layer comes

predominantly from the layer adjacent to the surface.

We check this phenomenon now with a high-resolution

simulation. This simulation uses a 200-m grid spacing in

the horizontal and 175 levels in the vertical with a spac-

ing ranging from 5 m near the surface to 200 m in the

free troposphere. The domain is a 25.6-km-wide square

with a model top at 30 km. To expedite the approach to

equilibrium while keeping t much greater than the eddy

lifetimes, t is set to 12 h. The simulation is run twice,

advecting the radioactive tracers once with first-order

advection and once with third-order advection. Recall

that the physical variables (momentum, water, etc.) are

always advected with third-order advection, so the

convection is exactly the same in both runs. The simu-

lation is run for at least one week with the q matrix and

its tendency obtained from an average over the last day.

a. Height of origin

The transilient matrices obtained from this simulation

are shown in Fig. 5. With both advection schemes, there

is a column of high values along the left edge of the ma-

trix. This band is spread out over 10–20 vertical levels, so

it is very well resolved. The matrix obtained using third-

order advection has a strip of negative values centered on

the column corresponding to 200 m. Because the ele-

ments of ~b are, by definition, nonnegative, the transilient

FIG. 4. Fractional changes in b (with respect to the run at t 5 48 h) for various t.
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matrix must be nonnegative away from the diagonal.

Clearly, the matrix obtained from tracers advected with

the third-order scheme violates this criterion. The matrix

obtained with first-order advection does not suffer from

this problem, which inspires more confidence. With either

scheme, however, the band of high values along the leftmost

edge of the matrix is robust, persistent, and well resolved.

The band of high values extends from 0 to 100 m on

the abscissa. In other words, the function b(z, z9) returns

large values for z9 , 100, which means that individual

large eddies are pumping air into the free troposphere

from below 100 m. To quantify this effect, we can cal-

culate the fraction of air passing upward through the

cloud base that originated from below 100 m. For the

high-resolution simulation, the cloud base is at 567 m.

Therefore, for each height z in the free troposphere, we

calculate

ðh

0
dz9b(z, z9)

ð567

0
dz9b(z, z9)

,

which is the fraction of subcloud air detrained at z that

originated from below h. This is a cumulative distribu-

tion as a function of h.

Figure 6 plots this function of h for a variety of height

ranges. The negative values in bij for third-order ad-

vection show up as negative slopes in the cumulative

distributions. With either advection scheme, the majority

of air transported out of the subcloud layer originates from

below 100 m. With first-order (third-order) advection, the

fraction is 67% (81%). This result concurs qualitatively

with the laboratory experiments of Sánchez et al. (1989),

who found that incipient thermals have low entrainment

rates.

b. Check with purity tracers

Recall that three conditions were used to identify the

b in Eq. (4) as the transilient matrix. The third condition—

that the tracer sources and sinks have long time scales—is

easily satisfied by choosing a t that is sufficiently large. The

other two—that the fractional area of eddies is much less

than one and that eddies begin with the average tracers at

their height of origin—are not under our control. In the

subcloud layer, the circulation comprises dry thermals that

occupy a substantial fraction of the domain, which violates

the first condition and may also lead to violations of the

second condition. It is incumbent upon us, then, to check

the results with an independent method.

To verify the conclusion that air from 0 to 100 m dom-

inates the subcloud air in cumuli, we use the purity tracer

that was first introduced by Romps and Kuang (2010a).

The purity tracer is initialized to a mixing ratio of 1 below

some height h and to 0 above h. As eddies rise up past h,

they carry with them an initial purity of 1 that is sub-

sequently reduced by the entrainment of air from above h.

The mixing ratio of the purity tracer tells us what fraction

of the air in the eddy originated from below h.

To analyze steady-state convection, the purity tracer is

reset to 1 below h at every time step. Above h, the purity

is set to 0 well outside the eddies at every time step. In

Romps and Kuang (2010b), a grid cell was defined as

‘‘well outside’’ if the surrounding 7 3 7 3 7 box of grid

cells contained only noneddying air. Here, we want to err

on the side of too small a purity, so we use a box that is

FIG. 5. As in Fig. 3, but for the high-resolution simulation.
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3 3 3 3 3 grid cells. This provides a buffer of one grid cell

in any direction from an eddying grid cell; a smaller box

(i.e., 1 3 1 3 1) would cause the purity tracer to be zeroed

as an eddy advects from one grid cell to the next. Since

there is no cloud in the subcloud layer and updraft ve-

locities are small, a grid box is defined as eddying if

its vertical velocity is positive. At any given moment,

roughly half of the boundary layer satisfies this condition,

but only those parcels that maintain a continuously pos-

itive velocity avoid having their purity set to 0.

We introduce two purity tracers into the high-resolution

simulation: ‘‘low’’ and ‘‘high.’’ The low purity tracer is set

to 1 below h 5 100 m and 0 above. The high purity tracer is

set to 1 below the cloud base (h 5 567 m) and 0 above. For

a parcel above the cloud base, the ratio of the low to high

tracers tells us the fraction of subcloud air that originated

from below 100 m.

Figure 7 shows the horizontally averaged low tracer

divided by the horizontally averaged high tracer. Below

100 m, both tracers are set to 1, so their ratio is 1. As we

move up in the boundary layer, the high purity is still 1,

but the average low purity is equal to the fractional area

of eddies times the average low purity of the eddies. We

see that the average low purity dips to as low as 0.1 just

below the cloud base.

Above the cloud base, however, the ratio rises to ap-

proximately 70% (;80%) for first-order (third-order)

advection. This matches the result from the transilient

matrix, which gave a ratio of 67% (81%). This confirms

that the majority of subcloud air in cumuli originates

from below 100 m. Compare this conclusion with the

null hypothesis that new cumuli are composed of air

taken equally from all heights below cloud base. If the

null hypothesis were true, then the ratio of low to high

purities above the cloud base would be 100/567 5 18%,

which is denoted by the dashed line in Fig. 7.

c. Implications of near-surface origin

One implication of a predominantly near-surface or-

igin is that CAPE is more accurately calculated by lifting

parcels from near the surface. In Fig. 8, CAPE is cal-

culated by adiabatically lifting (without the latent heat

FIG. 6. For various destination height ranges, the cumulative distribution of air origin for the high-resolution

simulation with (left) third-order and (right) first-order advection.

FIG. 7. The ratio of low purity to high purity with first-order and

third-order advection of tracers. The ratio predicted by the null

hypothesis is denoted by the dashed line.
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of fusion) a parcel initialized to the average properties of

air at the height on the abscissa. The left panel shows the

results of this calculation using 4096 soundings from

snapshots of the high-resolution simulation. The right

panel shows the same calculation using 1934 soundings

collected at the Atmospheric Radiation Measurement

Program (ARM) site in Nauru. The observations exhibit

much more variability than the simulation due to the

presence of diurnal, mesoscale, and synoptic variability,

but the qualitative picture is the same. For both the

CRM and ARM data, CAPE decreases almost mono-

tonically with the height of origin. Therefore, calculating

CAPE for an average subcloud parcel underestimates

the true CAPE available to cumuli, which mostly orig-

inate from the first 100 m.

What is so special about 100 m? In dry boundary layers

or boundary layers topped by nonprecipitating clouds,

a surface layer can often be identified in the bottom 10%

of the boundary layer by larger mean values of uy. Be-

neath precipitating cumulonimbi, however, the boundary

layer is strongly affected by cold pools (e.g., Moeng et al.

2009), which introduce horizontal heterogeneity that

complicates the interpretation of the mean uy profile.

Nevertheless, a surface layer can be identified from the

largest percentiles of uy. This is shown in Fig. 9, which

plots the 95th percentile of CAPE for parcels taken from

the initial height on the abscissa and lifted to the cloud

base. In this calculation, we use profiles from ARM

soundings at Nauru and soundings from snapshots of the

cloud-resolving simulation. Again, the observations ex-

hibit much more variability, which causes the 95th per-

centile to be much larger for Nauru than for the CRM.

Nevertheless, in both the observations and the model, the

CAPE value decreases rapidly within the first 100 m. This

identifies the first 100 m as a surface layer in which some

parcels have enough buoyancy to reach their level of free

convection.

5. Comparison to Stull

To compare the transilient matrix introduced here

with the one defined by Stull (1984, 1993), we use the

thought experiment depicted in Fig. 10. For simplicity,

FIG. 8. Percentiles of adiabatic, no-fusion CAPE from 10%–90% in intervals of 10% as a function of original height

(gray lines) from (left) pointwise soundings taken from snapshots of the high-resolution simulation and (right) ARM

soundings at Nauru. The mean is indicated by the dark line.

FIG. 9. The 95th percentile of CAPE as integrated from the original

height to 567 m.
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we work in nondimensional units. Consider an incom-

pressible fluid of unit density in a rectangular 2D domain.

Let us conceptually divide the domain into five horizontal

layers of unit depth. Imagine that fluid rises from the first

layer to the fifth layer in a fraction �� 1 of the domain at

a speed of 1 (i.e., one layer per unit time). The remaining

1 2 � of the domain sinks at a speed of �/(1 2 �) ’ �. A

transilient matrix can be diagnosed in two different ways:

the set-and-go method of Stull (1984) and the inject-and-

decay method described in section 2.

In Stull’s set-and-go method, five tracers are initial-

ized to a value of one in their respective layers and zero

elsewhere. Using the notation of section 2, the q matrix

is defined with columns equal the vertical profiles of the

tracers. At time t 5 0, q is equal to the identity matrix,

qt50 5

0
BBBBB@

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

1
CCCCCA[ I.

Following convention, the matrix is shown upside-down,

which makes the diagonal rise from bottom left to upper

right. Advecting the tracers for time Dt, the equation

›

›t
q 5 bStull,Dtq

is solved for b
Stull,Dt

by discretizing in time:

qt5Dt 2 qt50

Dt
5 bStull,Dtqt50 5 bStull,Dt.

At Dt 5 1, the ascending column has risen by one layer

while the rest of the fluid has descended a distance �.

Since the ascending branch covers a fraction � of the

domain and the descending branch covers a fraction ;1,

b
Stull,Dt

is

bStull,Dt51 ’ �

0
BBBBB@

0 0 0 1 21

0 0 1 22 1

0 1 22 1 0

1 22 1 0 0

21 1 0 0 0

1
CCCCCA. (13)

In the first column, we see that the ascending branch has

removed � of fluid from the first layer and deposited it in

the second layer. In the second column, we see two ef-

fects: the ascending branch has removed � of fluid from

the second layer and deposited it in the third layer, and

the descending branch has removed � of fluid from the

second layer and deposited it in the first layer. Analo-

gous explanations apply to the other columns.

Now, let us wait a time equal to the eddy turnover time,

which is Dt 5 4 in this case. This gives us the following:

bStull,Dt54 ’
�

4

0
BBBBB@

1 1 1 1 24

1 0 0 25 4

1 0 25 4 0

1 25 4 0 0

24 4 0 0 0

1
CCCCCA. (14)

The 1s in the top row tell us that fluid has been trans-

ported to the fifth layer from each of the first four layers.

This corresponds to the flushing out of the initial tracers

in the ascending column. The 1s in the leftmost column

tell us that fluid was transported from the first layer to

each of the other layers; this corresponds to the ascending

column filling itself with the tracer from the first layer.

There are two main problems with the matrices in

Eqs. (13) and (14). First, neither matrix conveys the

simple story of convective transport from the bottom to

the top with compensating subsidence in between. The

matrix in Eq. (13) is simply the diffusion operator: each

row has the f. . . , 1, 22, 1, . . .g pattern of the discretized

›2/›z2 operator. Therefore, it contains no information

about the large eddies, which defeats the purpose of a

transilient matrix. The matrix in Eq. (14), on the other

hand, has nonzero elements corresponding to large eddies

that are not present in the flow. The second problem is that

of convective structure memory (Ebert et al. 1989). If the

two matrices in Eqs. (13) and (14) were consistent, then

bStull,Dt54 would equal 4 times bStull,Dt51, but it does not.

This leads to the question of which, if either, of these is the

correct description of the fluid flow.

If we are concerned with the redistribution of tracers

on time scales long compared to the eddy turnover time,

the answer is that neither is correct. We get the correct

matrix using the inject-and-decay method, whereby we

FIG. 10. Fluid flow with a single updraft covering a fraction �

of the domain.
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continuously inject the five tracers into their respective

levels and let the tracers decay on a time scale that is

large compared to the eddy’s advective time scale (i.e.,

t � 4). For simplicity of illustration, let t be small com-

pared to 1/�, which is the time it takes the compensating

subsidence to move one unit of height; this assumption of

t � 1/� is not necessary, but it simplifies our thought

experiment. In a steady state, the factor of qik/t 2 Sik in

Eq. (8) is equal to the source of tracer k at height i due to

the fluid motion. The ascending branch generates a sink �

of tracer 1 in layer 1 and a source � of tracer 1 in layer 5.

Since we have assumed that the decay time t is much

smaller than the subsidence time scale 1/�, the surplus of

tracer 1 decays in layer 5 before it is exported by sub-

sidence. Therefore, q51/t 2 S51 5 �. Similarly, the export

of tracer 1 from layer 1 by the ascending eddy is matched

locally by q11/t 2 S11 5 2�. By the same token, the

compensating subsidence, which also occurs at a rate of

�, must be matched by (q/t 2 S)
ii

5 2(q/t 2 S)
i21,i

5 2�

for i . 1. There is also nonzero decay of tracer 1 in the

ascending column, but this is of magnitude �/t, and we

have required that t� 4 (see condition 3 of section 2), so

�/t is much smaller than the other elements of q/t 2 S.

With our simplifying assumption of t� 1/�, q21 is equal

to the identity matrix plus O(�) terms. Therefore, the

nondimensionalized version of Eq. (9) yields

b 5
�q

t
2S
�

[I 1O(�)] 5 �

0
BBBBBBB@

1 0 0 0 21

0 0 0 21 1

0 0 21 1 0

0 21 1 0 0

21 1 0 0 0

1
CCCCCCCA

1 O(�2) 1 O(�/t):

This transilient matrix describes the flow accurately: the

first column describes the transport of fluid from the

bottom layer to the top layer by the ascending branch,

and the other columns describe the compensating sub-

sidence. Since this matrix contains all the information

about the flow, it can be safely exponentiated to any time

interval, large or small.
The relationship between this inject-and-decay tran-

silient matrix and Stull’s set-and-go matrix bears some

similarity to the relationship between the two approaches

of constructing linear response functions of cumulus en-

sembles to large-scale temperature and moisture anoma-

lies (Kuang 2010). Like the set-and-go transilient matrix,

a matrix that describes the response of the atmosphere

some time after an initial temperature or moisture per-

turbation suffers from complications due to the finite

lifetime of convective eddies. On the other hand,

introducing temperature or moisture sources, build-

ing a matrix of the resulting temperature and moisture

anomalies, and then performing a matrix inversion, like

the inject-and-decay method introduced here, is appro-

priate for flows with time scales longer than the convec-

tive time scale and results in a linear response functions

matrix that can be exponentiated [see the appendix of

Kuang (2010)].

6. Conclusions and discussion

We have introduced a transilient matrix that describes

the rearrangement of mass by convective eddies in moist

convection. It is shown how this matrix can be diagnosed

using a set of radioactively decaying tracers in cloud-

resolving simulations. The resulting transilient matrix

tells us that the majority of air in newborn cumuli orig-

inates from within 100 m of the surface. This conclusion

is confirmed independently using purity tracers.

This conclusion has important implications for how

CAPE is calculated. There are many choices that must

be made when calculating CAPE for a lifted parcel, in-

cluding the entrainment rate, how condensates fall out,

and the effective temperature of condensate freezing.

One of the most significant choices to be made is the

initial height from which to lift the parcel. The influence

of the initial height is so large that operational forecasts

distinguish CAPE calculations by this choice: surface-

based CAPE (SBCAPE) uses a parcel from the surface,

mean-layer CAPE (MLCAPE) initializes the parcel to

the mean potential temperature and specific humidity

in a layer typically 50–100 mb deep, and maximum un-

stable CAPE (MUCAPE) picks the initial height that gives

the largest value of CAPE (Doswell and Rasmussen

1994; Bunkers et al. 2002). The results obtained here

suggest that CAPE should be calculated using a parcel

with the mean potential temperature and specific hu-

midity of the air below 100 m.

For a study of boundary layer processes, a 200-m hor-

izontal grid spacing is far from ideal. Unfortunately,

this is near the limit of computational feasibility for

simulations with the following requirements: a run time

much greater than an hour, a domain sufficient to con-

tain deep convection, and a passive tracer for every

vertical layer. There are two obvious concerns about this

coarse spacing, and they would have opposite effects.

One concern is that the simulated boundary layer ther-

mals may be wider, and therefore more protected from

lateral entrainment, than real thermals. This would tend

to overestimate the fraction of air originating from be-

low 100 m. The other concern is that the 200-m hori-

zontal spacing may imprint itself on the vertical scale of

eddies, which would cause a spuriously large amount of
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air to be scooped up from above 100 m. This would tend

to underestimate the fraction of air originating from

below 100 m. Since both of these effects would naively

scale with the grid spacing, and since the 2-km and

200-m simulations agree quite well, it appears that these

effects are not significant.

Although the simulations presented here are in a steady

state, there is no requirement of a steady state in the

derivation of b. All that is needed is for the time derivative

in Eq. (9) to be averaged over a sufficiently large domain

or a sufficiently long time to capture the ensemble effects

of convection. This makes possible a wide range of appli-

cations. One such application is in a superparameterized

general circulation model (GCM), in which a cloud-

resolving model is embedded within each GCM grid cell.

In this case, the CRM’s large-scale features (including

tracer profiles) are time-dependent. By diagnosing b in this

time-dependent convection, and then exponentiating b to

the full GCM time step, we can faithfully model the effect

of convection on the GCM’s passive tracers. If the rank of

b were small compared to the number of GCM tracers, this

approach would be less computationally expensive than

simulating all of the GCM’s tracers explicitly in the CRM.

Another potential application of the transilient matrix

is as a way to improve the transport of chemical trac-

ers by standard convective parameterizations. If the

transilient matrix could be parameterized in terms of

bulk convective mass fluxes, then convective parame-

terizations could be augmented to include the transilient

transport of chemicals in a GCM. There is no guarantee

that such a parameterization is feasible, but the possi-

bility merits investigation.
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APPENDIX

Deriving the Transilient Matrix

For convenience, we will denote the four-vector (x, y,

z, t) by xm. Note that xm is a nonunique label for the

parcel of air located at (x, y, z) at time t. If xm is within

a large eddy, then we define zi(xm) as the initial height of

parcel xm when it enters the large eddy and zf(xm) as the

final height of the parcel when it exits the large eddy. We

then define T (z0, z9; xm) as

T (z0, z9; xm) [
d[z0 2 zf (xm)]d[z9 2 zi(xm)] if xm in a large eddy

0 otherwise
.

	
(A1)

Note that the double integral of T is

ð
dz9

ð
dz0T (z0, z9; xm) 5

1 if xm in a large eddy

0 otherwise
.

	
(A2)

To reduce clutter, integrals are assumed to be taken over

their variables’ full range (i.e., from 0 to ‘ above) unless

specified otherwise. When the integrals are taken over

finite ranges, we get

ðz
2
1Dz

z
2

dz0

ðz
1
1Dz

z
1

dz9 T (z0, z9; xm) 5

if xm in a large eddy and parcel
1 xm enters from [z1, z1 1 Dz] and

exits to [z2, z21 Dz]
0 otherwise

.

8>><
>>: (A3)

Furthermore, if we pick z between z9 and z0, multiply the

above expression by rw(xm), and integrate x and y over

the domain area A, then we get the net upward mass flux

eddying from [z1, z1 1 Dz] to [z2, z2 1 Dz] through

height z at time t. If we then integrate over time, we get

the net mass transported from [z1, z1 1 Dz] to [z2, z2 1

Dz] by large eddies through height z during that time

period.

This leads naturally to a definition for ~b. For T much

larger than eddy turnover times, ~b(z0, z9) is defined as

~b(z0, z9) [ sign(z0 2 z9)
1

T

ðT

0
dt

1

A

ð
A

dx dy T (z0, z9; xm)rw(xm) for any z between z9 and z0. (A4)
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We can use any value of z between z9 and z0 because

a parcel eddying from z9 to z0 must pass through all in-

termediate heights. Even if the parcel doubles back

through z on its convoluted path from z9 to z0, the fact

that w will be negative during downward passes through

z guarantees that the parcel’s net contribution to the

integral will be its mass and no more. If we were to

choose a z outside z9 and z0, then the integral on the

right-hand side would be zero because parcels eddying

from z9 to z0 will pass as many times downward through

z as they will upward through z. Therefore, we can also

write

1

T

ðT

0
dt

1

A

ð
A

dx dy T (z0, z9; xm)rw(xm) 5

~b(z0, z9) if z0 . z . z9

2b(z0, z9) if z9 . z . z0

0 otherwise

.

8<
: (A5)

We can use Eq. (A3) to see that

ðz
2
1Dz

z
2

dz0

ðz
1
1Dz

z
1

dz9 ~b(z0, z9)

is the flux of mass into [z2, z2 1 Dz] due to individual

large eddies originating in [z1, z1 1 Dz].

Let us define q(z0, z9; z) as the mass-weighted average

of q in large eddies at z traveling from z9 to z0:

q(z0, z9; z) [

ðT

0
dt

ð
A

dx dy T (z0, z9; xm)qrw(xm)

ðT

0
dt

ð
A

dx dy T (z0, z9; xm)rw(xm)

for fz, z9, z0g such that the
denominator is nonzero

0 otherwise

.

8>>>><
>>>>:

(A6)

Denoting the average over x, y, and t by an overbar,

qrw(z) is the net vertical mass flux of q at height z. Using

Eq. (A2), this can be separated into an integral over

large eddies and the region outside large eddies:

qrw(z) [
1

T

ðT

0
dt

1

A

ð
A

dx dy qrw(xm) 5
1

T

ðT

0
dt

1

A

ð
A

dx dy qrw(xm)

ð
dz9 dz0 T (z0, z9; xm)

1
1

T

ðT

0
dt

1

A

ð
xm outside large eddies

dx dy qrw(xm). (A7)

The term involving T can be rewritten using Eqs. (A5) and (A6),

1

T

ðT

0
dt

1

A

ð
A

dx dy qrw(xm)

ð
dz9 dz0 T (z0, z9; xm) 5

ð
dz0 dz9 q(z0, z9; z)

1

T

ðT

0
dt

1

A

ð
A

dx dy T (z0, z9; xm)rw(xm)

5

ð‘

z
dz0

ðz

0
dz9 q(z0, z9; z) ~b(z0, z9) 2

ðz

0
dz0

ð‘

z
dz9 q(z0, z9; z) ~b(z0, z9).

The last term in Eq. (A7) is integrated over the region of

fluid that contains only compensating mass flux and small

eddies. We can write the flux of q due to the compensating

mass flux M (i.e., the average rw in the region outside large

eddies) as M times the horizontal average of q in the

noneddying region. The compensating mass flux is given by

M(z) 5

ðz

0
dz0

ð‘

z
dz9 ~b(z0, z9) 2

ð‘

z
dz0

ðz

0
dz9 ~b(z0, z9) (A8)

because the first term on the right is the eddy flux from

above z to below z and the second term is the eddy flux

from below z to above z. The small eddies act diffusively

by assumption, so their effect can be described by a

vertical diffusivity k(z) acting on the horizontal average

of q in the noneddying region. Assuming that the frac-

tional area of large eddies is small, we can approximate

the noneddying q by the horizontal average of q over the

whole domain. Therefore, we can write qrw as
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qrw(z) 5

ð‘

z
dz0

ðz

0
dz9 q(z0, z9; z) ~b(z0, z9)

2

ðz

0
dz0

ð‘

z
dz9 q(z0, z9; z) ~b(z0, z9)

1 q(z)M(z) 2 k(z)
›

›z
q(z).

We will now make two approximations. First, we will

assume that the sources and sinks of q act on time scales

long compared to the large-eddy advective time scales.

This implies that tracers are relatively unaffected by

sources and sinks as they are transported by eddies,

which allows us to approximate q(z0, z9; z) as the mean

mixing ratio that parcels have as they enter a large eddy

at z9. Second, we will assume that the average large eddy

starting at z9 has the same q as the horizontal average at

z9. These two approximations reduce this equation to

qrw(z) 5

ð‘

z
dz0

ðz

0
dz9 q(z9) ~b(z0, z9)

2

ðz

0
dz0

ð‘

z
dz9 q(z9) ~b(z0, z9)

1 q(z)M(z) 2 k(z)
›

›z
q(z).

Taking minus the vertical derivative and using Eq. (A8),

this becomes

2
›

›z
qrw(z) 5

ð
dz9 ~b(z, z9)[q(z9) 2 q(z)]

2 M(z)
›

›z
q(z) 1

›

›z

�
k(z)

›

›z
q(z)

�
. (A9)

In other words, the vertical convergence and advection

of q into z (left side) is equal to the flux of large eddies to

z times their q surplus (first term on right), plus the ad-

vection of q by the compensating subsidence (second

term on right), plus the diffusive convergence of q (third

term on right). We define the transilient function b(z, z9)

as

b(z, z9) [ ~b(z, z9) 2 d(z 2 z9)

ð
dz0 ~b(z0, z)

1 M(z9)
›

›z9
d(z 2 z9)

1
›

›z9

�
k(z9)

›

›z9
d(z 2 z9)

�
. (A10)

The physical interpretation of this equation is discussed

in section 2.

It follows immediately from Eq. (A10) that the in-

tegral of b over its first argument is zero. It can also be

shown that the integral over its second argument is

zero:

ð
dz9 b(z, z9) 5

ð
dz9 ~b(z, z9) 2

ð
dz9 ~b(z9, z) 2

›

›z
M(z)

5

ð
dz9 ~b(z, z9) 2

ð
dz9 ~b(z9, z) 1

ð
dz9 ~b(z9, z) 2

ð
dz9 ~b(z, z9) 5 0.

These two identities reflect the fact that b conserves mass.

In particular, the net source of mass originating from z9 is

zero,

ð
dz b(z, z9) 5 0, (A11)

and the net source of mass arriving at z is zero,

ð
dz9 b(z, z9) 5 0. (A12)

Since the action of b on q can be rearranged as

ð
dz9 b(z, z9)q(z9) 5

ð
dz9 ~b(z, z9)q(z9) 2

ð
dz9 ~b(z9, z)q(z) 2 M(z)

›

›z
q(z) 2 q(z)

›

›z
M(z) 1

›

›z

�
k(z)

›

›z
q(z)

�

5

ð
dz9 ~b(z, z9)q(z9) 2

ð
dz9 ~b(z9, z)q(z) 2 M(z)

›

›z
q(z) 2 q(z)

ð
dz9 ~b(z, z9)

1 q(z)

ð
dz9 ~b(z9, z) 1

›

›z

�
k(z)

›

›z
q(z)

�

5

ð
dz9 ~b(z, z9)[q(z9) 2 q(z)] 2 M(z)

›

›z
q(z) 1

›

›z

�
k(z)

›

›z
q(z)

�
,
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Eq. (A9) can be written in terms of b as

2
›

›z
qrw(z) 5

ð
dz9 b(z, z9)q(z9). (A13)

To arrive at Eq. (A13), we required three conditions: the

fractional area of large eddies is much less than one; the

large eddies begin with the average q from their height

of origin; and the sources and sinks of q act on time

scales much longer than the large-eddy advective time

scales.
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