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ABSTRACT

This study extends ground-based stereophotogrammetry of clouds to oceanic settings, where there are often

none of the landmarks used in traditional camera calibration. This paper introduces a zero-landmark cali-

bration technique and tests it with two off-the-shelf digital cameras situated about 1 km apart facing Biscayne

Bay in Miami, Florida. The precision of the stereo reconstruction is studied theoretically, and the accuracy

of the reconstructions is validated against lidar and radiosondes. The stereo cameras are able to accurately

reconstruct a histogram of cloud-base heights from a single-image pair, a task that requires tens of minutes of

observation from a cloud lidar. The stereo cameras are also able to accurately reconstruct horizontal winds in

cloud layers with a temporal resolution in the range of 30 s to 5min, compared to once every 12 h for a typical

radiosonde launch site.

1. Introduction

Stereophotography has the potential to provide a

unique window into the behavior of clouds, enabling the

calculation of four-dimensional trajectories of cloud sur-

faces in exquisite detail. The fine spatial resolution and

high frame rate allow for the tracking of individual clouds

and convective turrets, providing a perspective on cloud

life cycles that cannot be replicated with other existing

technologies. Radar, with its ability to measure the con-

densates and motions within clouds, comes closest to this

capability. For example, vertically pointingW-band radar

can map the distribution and vertical velocity of shallow,

nonprecipitating clouds (Kollias et al. 2001, 2003, 2007;

Kollias and Albrecht 2010; Ghate et al. 2011), but its

‘‘soda straw’’ view of the atmosphere cannot provide

information on the life cycle of any individual cloud. To

measure cloud life cycles, individual clouds must be

imaged repeatedly, which would require the use of a

scanning radar. The downside of a scanning radar is its
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coarse spatial and temporal resolution, caused by typ-

ical beamwidths on the order of 18 and the time it takes

for the radar to mechanically scan the sky. For exam-

ple, scanning weather radar are typically used to gen-

erate cloud maps with a spatial and temporal resolution

of;1 km and;10min, respectively (e.g., Davies-Jones

1979; Yuter and Houze 1995; Collis et al. 2013), which

is too coarse to track the life cycle of cloud turrets with

either size &1 km or updraft speed *10m s21.

To make a more apples-to-apples comparison be-

tween a scanning radar and a digital camera, we should

consider a scanning mode that covers an atmospheric

volume similar to a camera’s field of view. For example,

the boundary layer range–height indicator (BL-RHI)

scan, as employed by the W-band scanning radar at the

Atmospheric Radiation Measurement Program (ARM)

sites (Mather and Voyles 2013; Ackerman and Stokes

2003), covers 908 of elevation (horizon to zenith) and 808
of azimuth. This is comparable to the fields of view for

the cameras used in this study: the horizontal fields

of view are equal to 768 and 678 for the left and right

cameras, respectively. With the BL-RHI scan, the sky is

mapped with a resolution of 18 in elevation and 28 in
azimuth once every 5min (Fielding et al. 2013; Kollias

et al. 2014). By comparison, an off-the-shelf digital

camera has an angular resolution of about 0.18, and it

can capture images at frame rates greater than 1Hz.

Consider a convective cloud at a distance 20 km rising

at 10m s21. A BL-RHI scan will image the cloud with

a transverse resolution of 700m and a vertical displace-

ment of the cloud between scans of 3 km. A camera with

a modest 0.1-Hz frame rate will image the cloud with

a resolution of about a few tens of meters and a vertical

displacement between images of 100m. With this spa-

tial and temporal resolution, stereophotogrammetry can

provide detailed cloud life cycle data.

Stereophotogrammetry dates back more than 100

years, with early cloud studies making use of theodolites

(Koppe 1896). Analog photographs were used in the

stereophotogrammetry of clouds from at least the 1950s

to obtain cloud positions and velocities (Malkus and

Ronne 1954; Kassander and Sims 1957; Orville and

Kassander 1961; Bradbury and Fujita 1968; Warner

et al. 1973). More recently, digital photographs have

been used (Allmen and Kegelmeyer 1996; Kassianov

et al. 2005; Zehnder et al. 2007; Damiani et al. 2008),

which opens up the possibility of using feature-matching

algorithms to automate the reconstruction process (Seiz

et al. 2002; Zehnder et al. 2006).

In all of these studies, the essential first step is the

careful calibration of camera positions and orientations.

Orientation of the cameras—that is, the determination

of the camera’s three Euler angles—is often the trickiest

step. Previous approaches have used the positions of

known landmarks, such as topographic features (e.g.,

Hu et al. 2009) or the positions of stars (e.g., Seiz et al.

2002). In this study, we describe how to calibrate a pair

of cameras in the absence of landmarks, as needed for the

case of daytime images of land-free scenes. This method

is applied to images collected by a pair of cameras looking

out over Biscayne Bay in Miami, Florida, during April

2013. Section 2 reviews the concept of three-dimensional

reconstruction with stereo cameras. Section 3 discusses

the setup and calibration of the two cameras. Section 4

calculates the precision of the stereo reconstruction. The

accuracy of the reconstructions is validated by compari-

son with lidar in section 5 and radiosondes in section 6.

Section 7 summarizes the results.

2. Calibration without landmarks

Given two contemporaneous photographs from two

cameras with known positions and orientations, we can

reconstruct the position of any object that appears in

both images. This ‘‘stereo reconstruction’’ of an object’s

three-dimensional position is simply a matter of tri-

angulation. An example in two dimensions is given in

Fig. 1. Each of the two cameras (left and right) is rep-

resented by a pinhole through which light is admitted

(black circle) and an image line where a photosensitive

array would be located (black line). Each camera re-

ports a single number: the position of the object in the

camera’s image plane. We can write these positions as

x0l and x0r, which we can think of as pixel indices in

digital image sensor arrays. The disparity d is defined as

FIG. 1. An example of stereo reconstruction in two dimensions.

Each camera is represented by a pinhole (black dot) and a pro-

jection screen (black line). The object of interest (black square)

projects onto the left and right cameras at the positions of the green

square and blue square, respectively. The left camera knows that

the black square lies along the green line, and the right camera

knows that the black square lies along the blue line. The position of

the black square is calculated as the intersection of these two lines.

JULY 2014 ÖKTEM ET AL . 1483



the difference in these two image-plane positions:

d[ x0r 2 x0l. Using triangulation, these two numbers allow

us to determine the location of the object (x and y) in two-

dimensional space. The left camera tells us that the

object lies somewhere on the locus of points denoted by

the green line, for all objects on that line will project

onto x0l. The right camera tells us that the object lies

somewhere on the locus of points denoted by the blue

line, for all objects on that line will project onto x0r. The
true location of the object is given by the intersection of

these two lines.

The line passing through the two pinholes is referred

to as the baseline. In Fig. 1, the two cameras are drawn

with parallel baseline and image lines. In some appli-

cations, this type of arrangement is both desirable and

practical. For example, if a short baseline is appropriate,

then the two cameras can be physically attached to one

another, thereby guaranteeing that the baseline and

image lines are parallel. In some applications, however,

the required baseline is too long for this approach to be

feasible. Baselines are chosen to be about one or two

orders of magnitude shorter than the distance from the

cameras to the objects being imaged (Gallup et al. 2008).

This reflects a trade-off between 1) the greater disparity

with a larger baseline, which makes the reconstruction

more precise; and 2) the increased difficulty of identi-

fying matching points (and a greater occurrence of

occlusions) with a larger baseline, which reduces the

amount of data. If we wish to capture clouds with a

resolution of 100m or better with a 4-mm focal-length

lens and a sensor that is 4mm wide with 1000 pixels

across, then the basic pinhole model geometry (Forsyth

and Ponce 2003) tells us that we are restricted to looking

at clouds within 100km. These distances are best sam-

pled with a baseline on the order of 1–10km, which is far

too large to have the cameras attached to each other by

a rigid structure.

Therefore, for stereophotography of clouds, the two

cameras must be sited and oriented independently of

one another. This leads to a potential problem: errors

in the assumed position and orientation of the cameras

will generate errors in the reconstructed positions of

objects. In Fig. 1, the reconstructed x and y will be er-

roneous if we believe that the two image lines are par-

allel with the baseline when, in fact, one of them is not.

To mitigate this source of error, careful attention must

be paid to the calibration (i.e., measurement) of camera

position, internal optical parameters, and camera ori-

entation. Camera position can be determined by using

the global positioning system (GPS) or by collocation of

the camera with known landmarks. Internal optical pa-

rameters can be obtained from the manufacturer or from

controlled laboratory tests of the camera. Orientation,

on the other hand, must be measured in the field upon

deployment.

A standard approach to calibrating orientation is to

use landmarks with known positions. For example, in the

two-dimensional case, at least one landmark is needed

in the field of view to determine the one angle of ori-

entation. In three dimensions, there are three Euler

angles (roll, pitch, and yaw), which can be measured

with at least two landmarks. This is the approach taken

by recent stereophotogrammetric studies (e.g., Zehnder

et al. 2007; Hu et al. 2009). But, what if there are fewer

than two landmarks or no landmarks at all? In the study

of maritime clouds, cameras looking out over the ocean

will see, in general, only ocean and sky, with no fiducial

landmarks in the field of view. Here, we report on a cali-

bration technique for this scenario, that is, a calibration

method that does not require the use of landmarks.

To explain calibration without landmarks, let us

return, for the moment, to Fig. 1. In two dimensions,

there is almost always a solution to the intersection of

two lines of sight (the rare exception being when the

lines are supposedly parallel). Therefore, the cameras

will report an unambiguous position for almost any ob-

ject, regardless of errors in calibration. This can be

stated mathematically as follows: for supposedly par-

allel baseline and image lines, any pair of x0l 6¼ x0r will
yield an unambiguous prediction for x and y. While this

may sound like a good thing, it can cause problems by

masking errors in the calibration: stereo cameras will

report unambiguous reconstructions whether they are

well calibrated or not.

In three dimensions, however, this is not the case.

Generally, any error in the calibration will cause the

lines of sight to fail to intersect in three-dimensional

space. This is illustrated in Fig. 2, which shows the image

planes for the left and right cameras. In the left camera,

the object’s image is denoted by the green square, which

has a position in the image plane denoted by x0l and y0l.
Given the image location (x0l, y

0
l) and the assumed po-

sition and orientation of the left camera, we can calcu-

late the line in three-dimensional space on which the

object must lie (i.e., the set of all points in three-

dimensional space that would project onto the green

square). Given the position and orientation of the right

camera, we can then draw the theoretical image of that

line as the green line in the image plane of the right

camera; this is called the epipolar line. If the position

and orientation of the cameras were known with per-

fect accuracy, then this epipolar line would pass through

the object in the imageplane. In practice, however, an error

in the calibration of the cameras leads to an error that

manifests itself as some amount of displacement of the

image from the epipolar line. Similarly, the object’s image
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in the left camera’s image plane is also displaced from

the epipolar line coming from the right camera.

In the absence of landmarks, we can use this mismatch

to calibrate the cameras. The idea is simple in principle.

Given a large number of points in the field of view (spots

on clouds, ships in the ocean, birds in the sky), define an

objective function as the sum (over all points and both

image planes) of the deviation (in the image plane) be-

tween the image and the associated epipolar line. Then,

using an optimization algorithm, find the set of calibra-

tion parameters that minimizes this objective function.

In practice, this is an optimization problem of high di-

mensionality (six position parameters, six Euler angles,

and several internal optical parameters), and so is nu-

merically intractable without a good initial estimate of

the parameters. In the case described in section 3c, es-

timates are obtained using Google Earth for the camera

positions (GPS would also work for this purpose), the

position of the sun for yaw (a compass would work just

as well, correcting for magnetic declination), and the

ocean horizon for pitch and roll.

3. Camera setup and calibration

Stereo reconstruction is an implementation of pro-

jective geometry, where the projection of a 3D point

in space onto a 2D image frame is related through

a projection matrix P. Let X 5 (x, y, z, 1) denote the

homogenous coordinates of a point in 3D space. In ho-

mogeneous coordinates, (ax, ay, az, a) defines the same

point for all a 6¼ 0. Similarly, let X0 5 (x0, y0, 1) be the

homogeneous coordinates of the image in the image

plane. The definitions and units of the notations used

throughout the paper are listed in Table 1. For a pinhole

camera, the relation between X and X0 is expressed as

(Forsyth and Ponce 2003)

X05PX . (1)

The projection matrix is the product of a camera

matrix C, rotation matrix R, and translation matrix T:

P5CRT . (2)

The camera matrix C is given by

C5

2
64
f kx 0 cx
0 f ky cy
0 0 1

3
75 , (3)

where f is the focal length; kx (ky) is the density of pixels,

that is, number of pixels per distance, in the image

plane’s x0 (y0) direction; and cx (cy) is the principal point

coordinate of the image plane. The rotation matrix R

aligns the world coordinates (x, y, z) into the coordinate

system aligned with the camera (x0 and y0 in the image

plane and z0 perpendicular to the image plane in the

direction of the line of sight). Letting u1, u2, and u3 de-

spectively, R can be expressed as

R5

2
64
1 0 0

0 cosu1 sinu1

0 2sinu1 cosu1

3
75

2
64
cosu2 0 2sinu2

0 1 0

sinu2 0 cosu2

3
75

3

2
64
cosu3 2sinu3 0

sinu3 cosu3 0

0 0 1

3
75 . (4)

The translation matrix transforms an object’s world

coordinates into camera-relative coordinates by sub-

tracting the camera’s world coordinate. Denoting

the camera’s world coordinates by x0, y0, and z0, T is

given by

T5

2
64
1 0 0 2x0
0 1 0 2y0
0 0 1 2z0

3
75 . (5)

FIG. 2. In practice, errors in the calibration of camera position and orientation lead to failure

of the two loci to intersect in three dimensions. In a camera’s image plane, this manifests itself

as a displacement of the object’s image from the epipolar line predicted by the other camera.
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Note that all the expressions in this text assume a Car-

tesian coordinate system.

planes provides two sets of equations,

X0
l 5PlX and X0

r 5PrX , (6)

where subscripts l and r refer to the left and right cam-

eras, respectively. Stereo reconstruction is the process

of calculating X from X0
l and X0

r using these two equa-

tions (Hartley and Zisserman 2003). Of course, in order

for this procedure to work, the projection matrices

must be known; that is, the cameras must be calibrated.

Camera calibration will be discussed below after the

description of the camera setup.

a. Camera setup

The two cameras used in this study are located on

Virginia Key in Miami, where they overlook Biscayne

Bay (25.68N, 80.28W; see Fig. 3). One of the cameras

(a 5-megapixel Stardot NetCam SC) is mounted on the

roof of the Marine and Science Technology (MAST)

Academy. This camera will be referred to as the

right camera throughout the text. The left camera

(a 3-megapixel Stardot NetCam XL) is mounted on

the roof of the Rosenstiel School of Marine and At-

mospheric Science (RSMAS) as part of South Florida’s

Cloud–Aerosol–Rain Observatory (CAROb; http://

carob.rsmas.miami.edu). It is located 296m to the east

and 822m to the south of the right camera. The right and

left cameras face 6.568 and 18.198 west of south, re-

spectively. The right and left cameras capture images at

12963 960 and 10243 768 pixel resolution, and 30- and

3-s intervals, respectively. The left camera was acquired

in 2011 as part of CAROb, but the right camera was

acquired in 2012 to launch the stereo reconstruction

research; hence, it has a higher resolution than the left

camera. The two cameras are connected to separate

servers and so are controlled independently from each

other, but they are synchronized to a common time

server. Both cameras have wide-angle lenses, which cause

noticeable radial distortion that cannot be ignored as in

previous works (such as Hu et al. 2009).

b. Camera lens distortion

Although the theory of stereophotogrammetry is

formulated for pinhole cameras, real camera lenses do

not behave as pinholes. Wide-angle lenses, in particu-

lar, suffer from a significant amount of radial distortion

(i.e., deviation of the projection from that generated

by a pinhole). The cameras used here have wide angles

of view—678 and 768—and the radial distortion is clearly

visible (see Fig. 4). This distortion is corrected by a

mapping based on the Brown distortion model (Brown

1966),

TABLE 1. List of variables and their units.

Variable Definition Unit

x0,l, y0,l, z0,l World coordinates of the left camera m

x0,r, y0,r, z0,r World coordinates of the right camera m

x, y Position to the east and to the north

of the right camera

m

z Height relative to the sea level m

u1, u2, u3 rad

x0, y0 Pixel indices in the image plane pixel

f Focal length mm

kx, ky Pixel density mm21

cx, cy Principal point coordinate pixel

k1, k2, k3 Lens distortion coefficients —

ar Intercept in horizon line fitting pixel

mr Slope in horizon line fitting —

u, y ms21

FIG. 3. (left to right) The locations of the two cameras shown as maps with increasing zoom. The red squares in (left) and (middle) indicate

the regions displayed in (middle) and (right), respectively. The red rectangles in (right) indicate the locations of the two cameras.
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~x5 (x2 cx)(11k1r
21 k2r

4 1k3r
6)1 cx , (7a)

~y5 (y2 cy)(11 k1r
21 k2r

41 k3r
6)1 cy , (7b)

r25 (x2 cx)
21 (y2 cy)

2 , (7c)

where (~x, ~y) is the observed (distorted) position of

a point in the image plane, and (x, y) is the corrected

position (i.e., where on the image plane the point would

lie if the lens were replaced by a pinhole). Equations 7a

and 7b establish a relation between the observed and

correct pixel positions in terms of unknown radial dis-

tortion parameters ki. A checkerboard pattern is printed

out and held in front of the camera at various angles

and positions. The distorted corner-point positions are

extracted from the captured images by an automatic

corner-extraction algorithm in OpenCV, an open source

computer-vision library (Bradski and Kaehler 2008). A

lens correction algorithm from the same OpenCV li-

brary is then used to estimate the ki using Levenberg–

Marquardt optimization (Press et al. 2007). With the ki
estimated in this way, the mapping of Eqs. (7a)–(7c) is

applied to compensate for the distortion. Samples of

images before and after this correction are displayed in

Fig. 4. OpenCV lens distortion correction algorithm

also gives an estimate of fk, cx, and cy, together with ki.

c. Camera calibration

Camera ‘‘calibration’’ refers to the estimation of in-

trinsic parameters (given by the elements of C) and

extrinsic parameters (given by the elements of R and T).

The elements of C can be extracted from the camera’s

technical specifications if the lens model is known. The

cameras used here are equipped with varifocal lenses,

with focal length f varying between 4 and 8mm. This sets

a lower and upper bound on f, but the precise value is

unknown a priori. The principal point coordinate, de-

noted by (cx, cy), is often assumed to be at the center of

the image plane, but it may deviate from the center

depending on the lens used.

Camera extrinsic parameters include the world co-

ordinate of the camera center and the three angles of

the camera’s yaw, roll, and pitch. These parameters must

be determined with high accuracy to achieve meaningful

reconstructions. The Google Earth mapping software

provides the coordinates of both cameras in 3D. The

sun provides a way of estimating the yaw when it is low

enough to be captured by the cameras in January and

February. By recording the time of day when the sun is

FIG. 4. Images (top) before and (bottom) after barrel-distortion correction for the (left) and (right) right cameras.
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centered horizontally on the image plane, the azimuth

of the sun at that time (obtained from http://www.esrl.

noaa.gov/gmd/grad/solcalc) gives the absolute yaw of

the right camera and an initial estimate of the relative

yaw between the two cameras. This and other parame-

ters are then calculated using the epipolar constraint

and the horizon constraint, described below.

1) THE EPIPOLAR CONSTRAINT

Given the homogeneous world coordinate X of some

object, the projection matrix Pl maps X onto the homo-

geneous image coordinate X0
l in the left camera’s image

plane, as discussed above. In other words, X0
l 5PlX.

Likewise, for the right camera, X0
r 5PrX. As discussed

in section 2, the epipolar line in the right camera’s

image plane is the image of all world coordinates that

would project onto X0
l in the left camera’s image plane.

Likewise, the epipolar line in the left camera’s image

plane is the image of all world coordinates that would

project onto X0
r in the right camera’s image plane. If Pl

and Pr are known perfectly, then X0
r will lie on the epi-

polar line in the right camera’s image plane and like-

wise for X0
l in the left camera’s image plane. On the

other hand, if Pl and Pr contain error, then images will

not, in general, coincide with the epipolar lines. In

particular, it is error in the internal parameters (focal

length and principal point) and in the relative dis-

placement, relative pitch, relative yaw, and relative roll

of the two cameras that causes these deviations. Note

that changes in displacement, pitch, yaw, and roll that

are applied equally to both cameras cannot cause im-

ages to deviate from epipolar lines; only relative errors

in these quantities manifest as deviations of images

from epipolar lines.

This deviation of images from epipolar lines can be

quantified using the ‘‘fundamental matrix’’ F, which is

constructed from Pl and Pr (for details, see Hartley and

Zisserman 2003; Forsyth and Ponce 2003). The elements

of FX0
r define the epipolar line in the left camera’s image

plane; that is, if FX0
r 5 (a,b, c)T, then the epipolar line in

the left image plane is equal to (x0l, y
0
l: ax

0
l 1 by0l 1 c5 0).

If the calibration of Pl and Pr is perfect, then

X0T
l FX0

r 5 0, (8)

for all image pairs X0
r andX

0
l. Writing FX0

r 5 (a, b, c)T, this

equation reduces to

�
x0l y0l 1

�
0
@

a

b

c

1
A5 ax0l 1 by0l 1 c5 0,

which simply implies that X0
l is on the epipolar line.

The fundamental matrix is a 33 3 matrix with rank 2.

Equation (8) implies that the fundamental matrix can

be estimated from point correspondences, in the least

squares error sense. Note that, although Pl and Pr

uniquely define the fundamental matrix, the reverse is

not true. The fundamental matrix determines Pl and Pr

up to an overall displacement, pitch, yaw, and roll; in

other words, F gives the relative displacement, relative

pitch, relative yaw, and relative roll of the left camera

with respect to the right camera. The absolute position,

pitch, yaw, and roll of the right camera must be de-

termined by other means. For absolute position of the

right camera, we use Google Earth, but readings from

a GPS unit would have worked just as well. For yaw,

we use the image of the sun, but we could have just as

easily determined the camera’s yaw with a compass,

correcting for magnetic declination. Note that any er-

rors in the absolute position and yaw only add an

overall displacement and azimuth to the reconstruc-

tions; they do not affect the stereographically recon-

structed heights, distances, or velocities. Errors in

absolute pitch and absolute roll, however, will affect

reconstructed heights, distances, and velocities, so they

must be measured accurately.

2) THE HORIZON CONSTRAINT

To accurately calibrate the right camera’s absolute

pitch and absolute roll, we use the ocean horizon. Con-

sider a camera located at world coordinates (x, y, z) 5
(0, 0, h) using the standard meteorological convention

of x increasing to the east, y increasing to the north,

and z increasing with altitude. To use the horizon for

calibration, we must first determine where the horizon

is located in world coordinates. Let us denote the hori-

zontal displacement of the horizon from the camera by

dH and the vertical displacement of the horizon from

the camera’s sea level by ~h, as depicted in Fig. 5. The

horizon is the set of world coordinates where lines ema-

nating from the camera touch the earth’s surface as a

tangent. Using the two triangles in Fig. 5, we obtain

the similarity equation (h1 ~h)/dH 5 dH /(Re 2 ~h), where

Re is the radius of the earth. This implies that

d2H 5 (Re2
~h)(h1 ~h) . (9)

Using the Pythagorean theorem, we also have

R2
e 5 d2H 1 (Re2

~h)2 . (10)

Substituting Eq. (9) for d2
H in Eq. (10) results in

~h(Re1 h)5Reh . (11)
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Approximating Re 1 h’Re for h � Re, ~h’ h can be

derived. In other words, the depth of the horizon equals

the height of the camera. Note that h2 ~h becomes only

16 cm even when h is 1 km, so ~h’h is a safe approxi-

mation for most practical cases. Then, the distance

of the camera to the horizon can be calculated from

Eq. (9) as

dH 5
ffiffiffiffiffiffiffiffiffiffiffi
2Reh

q
. (12)

Having found expressions for ~h and dH, we know that

the horizon for the right camera at (xr, yr, hr) can be

described by the set of 3D points

[xH
r
, yH

r
, zH

r
j (xH

r
2 xr)

2 1 (yH
r
2 yr)

2

5 2Rehr, zH
r
52hr] . (13)

Figure 6 shows the horizon in the camera image plane

for heights of h 5 1, 10, and 100m with zero roll angle.

As an observer moves up off the surface, the curvature

of the earth increasingly manifests itself as a bending of

the horizon (until, in outer space, the horizon is clearly

a circle). As seen in Fig. 6, however, the projection of

the horizon (i.e., its outline in the photograph) deviates

from a straight line by less than one pixel for camera

heights up to 100m. Hence, we can assume that the

projection of the horizon is a line in the right camera’s

image plane, which can be described by the set of pixels

(x0H
r
, y0H

r
j y0H

r
5mrx

0
H

r
1 ar) , (14)

for some constantsmr and ar. The values ofmr and ar can

be obtained easily by regressing a line on the image of

the horizon. We know, therefore, that the projection

matrix Pr must satisfy

(PrXH
i

)25mr(PrXH
i

)11 ar ,

where the XHi
denotes elements of Eq. (13) and the

subscripts 1 and 2 denote the first and second compo-

nents, respectively, of the image vector. This equation

implicitly defines the right camera’s pitch and roll.

3) CALIBRATION AND RECONSTRUCTION

To calibrate the cameras, we can use the fundamental

matrix to identify the intrinsic camera parameters up to

a scale and relative camera pose, and we can use the

visible horizon to identify absolute pitch and roll and

the scale. Let us define a cost function C as

FIG. 5. For a camera at height h above sea level, the horizon is

located a horizontal distance dH away from the camera and a dis-

tance
;
h below the camera’s sea level. Using the trigonometry de-

scribed in the text, it can be shown that h
;
’h and dH ’

ffiffiffiffiffiffiffiffiffiffiffi
2Reh

p
,

where Re is the radius of the earth.

FIG. 6. (left to right) The location of the horizon in the camera’s image plane for h 5 1, 10, and 100m. Note that, to within one pixel,

the projection of the horizon forms a straight line across the image.
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2 . (15)

This cost function jointly penalizes the deviations from

the epipolar constraint and the horizon constraint, and

it can be expressed solely in terms of the left and right

camera projection matrices. The first term can be un-

derstood as follows. Writing the components of FX0
r

as (a, b, c)T, the epipolar line in the left image plane is

defined by ax0l 1by0l 1 c5 0. The vector (a, b) points

perpendicular to this epipolar line. Therefore, jdej is the
minimum distance of (x0l, y

0
l) from the epipolar line if

adding

deffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 b2

p (a,b)

to (x0l, y
0
l) gives a coordinate that lies on the epipolar

line. Therefore, de is defined by

a

�
x0l 1 de

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 b2

p
�
1 b

�
y0l 1 de

bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 b2

p
�
1 c5 0,

which can be rearranged to give

de 52
ax0l 1 by0l 1 cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 1b2
p 52

X0T
l FX0

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(FX0

r)
2
11 (FX0

r)
2
2

q .

The first term of Eq. (15) is, therefore, the sum of

squared distances of images from their epipolar lines.

The objects used in this sum can be any set of objects in

the field of view of both cameras: clouds, sea gulls, ships,

buoys, etc. In the second term of (15), the sum is over

a set of world coordinates chosen from Eq. (13). The

expression mr(PrXHi
)1 1 ar is the actual y0l position of

the horizon at x0l 5 (PrXHi
)1, while (PrXHi

)2 is the ex-

pected position of the horizon at that x0l given the pro-

jection matrix Pr. Therefore, the second term in the cost

function is the sum of squared distances (in the y0 di-
rection) of the actual horizon from the projected hori-

zon. Levenberg–Marquardt optimization (Press et al.

2007) is used to minimize the cost function and, thereby,

solve for the unknown parameters of the projection

matrices.

Focal lengths, principal point coordinate, pitch, roll,

and relative yaw are used as the free parameters in this

optimization. The initial values for intrinsic parameters

are obtained from the lens distortion correction algo-

rithm and the initial pitch and roll angles are estimated

from the horizon image. Once the projection matrices

are constructed, 3D reconstruction is performed with

the direct linear transformation (DLT)method (Hartley

and Zisserman 2003). DLT looks for the solution X,

which is in the null-space of AX 5 0, where

A5

0
BBBBB@

x0rP
(3)
r 2P(1)

r

y0rP
(3)
r 2P(2)

r

x0lP
(3)
l 2P

(1)
l

y0lP
(3)
l 2P

(2)
l

1
CCCCCA

(16)

and P(i) refers to the ith row of the projection matrix.

4. Estimating the reconstruction precision

In this study, the baseline between the two cameras is

296m in the east–west direction and 822m in the north–

south direction. The left camera is pointed 18.198 west
of south, and the right camera is pointed 6.568 west of
south. This configuration is depicted in Fig. 7. The yaw

angles given here are obtained from the sun’s position,

but the relative yaw angle between the cameras is ob-

tained by the epipolar constraint. The fields of view of

the left and right cameras are 768 and 678, respectively.
By coincidence, the leftmost viewing angle of the left

camera coincides nearly perfectly with the baseline.

This configuration poses some unique challenges.

Consider a line of sight from one of the cameras that is

collinear with the baseline. In this case, the two lines of

sight are collinear. As a result, there is no information

that can be gathered about the depth of any object on

this line: all positions along on this line will project onto

the same pair of image-plane pixels. Therefore, we see

that the reconstruction must fail for objects near the

baseline. In most applications of stereophotogrammetry,

FIG. 7. Relative camera location and yaw (not drawn to scale).
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the baseline is not within the field of view of both cam-

eras, so this is not an issue. In our configuration, how-

ever, we must be careful to quantify the reconstruction

error near the baseline.

To get a feeling for the magnitude and spatial distri-

bution of this reconstruction error, let us derive the error

analytically for the case of two identical cameras in 2D

with the same relative displacement and relative yaw as

the Miami cameras. To this end, let us derive the dis-

parity d[ x0r 2 x0l as a function of an object’s position

relative to the left camera. Let xl and zl denote the co-

ordinates of the object in the left camera’s reference

frame (i.e., with the origin at the left camera, the pos-

itive zl axis pointing in the direction of the left camera’s

line of sight, and with xl increasing to the right of the

left camera). Similarly, let xr and zr denote the object’s

coordinates in the right camera’s reference frame. Let

(xl, zl) 5 (xb, zb) be the location of the right camera in

the left camera’s reference frame; here, the subscript

b refers to the baseline. Likewise, (xr, zr) 5 (2xb,2zb)

is the location of the left camera in the right camera’s

reference frame. In addition, let the right camera’s

image plane be tilted counterclockwise at an angle u

relative to the left camera’s image plane.

Figure 8 depicts this geometry, with the perspectives

from the two cameras overlaid on a common image

plane. The horizontal line at the bottom of the figure is

the image plane, and the two diagonal lines are the two

lines of sight, which intersect each other at the pinhole.

In the left camera’s reference frame, the object is lo-

cated at (xl, zl), which is at the end of the line of sight that

slopes up and to the right. In the right camera’s refer-

ence frame, the object is located at (xr, zr), which is at the

end of the line of sight that slopes up and to the left. The

dashed lines aid the eye in seeing the trigonometric re-

lationships to be used in the derivation below. As de-

picted in Fig. 8, xb . 0, zb , 0, and xr , 0.

By trigonometric similarity,

zl/L5 f /d (17)

The distance L is given by

L5Dx2 (2Dzxr/zr) , (18)

where Dx 5 xl 2 xr, Dz 5 zr 2 zl, and xr and zr are

given by

�
xr
zr

�
5

�
cosu sinu

2sinu cosu

��
xl 2 xb
zl 2 zb

�
. (19)

Combining these into an expression for the disparity as

a function of xl and zl, we obtain

d(xl, zl)5 f [(xl 2 xr)2 (zr 2 zl)xr/zr]/zl , (20)

where xr and zr are defined in terms of xl and zl by

Eq. (19).

For simplicity, assume that there is no error in the

measurement of the image location in the left camera’s

image plane. This measurement fixes the ratio xl/zl.

Now, imagine that the measurement of the image in the

right camera is uncertain. This introduces uncertainty

into the disparity d, which generates an uncertainty in

the values of xl and zl. Let us assume that the error in

the right camera’s image plane is on the order of one

pixel. We would like to know how much fractional er-

ror that generates in xl and zl (the fractional error will

be the same for the two, since we assume their ratio is

known exactly).

To get a sense of the potential error in the recon-

struction from the Miami cameras, we will assume that

each of the two cameras has the average properties of

the two Miami cameras. In particular, we use kf 5 817

in place of f in Eq. (20) to give d in pixels (kf 5 817 is

the average of 651 for the left camera and 983 for the

right camera). As stated above, the relative position

and relative yaw of the two cameras is chosen to be the

same as for the Miami cameras. Figure 9 plots

1
›

›a
d(axl,axr)

����
a51

,

�
(21)

which gives the fractional error in xl and zl per pixel of

error in the position of the object in the right camera’s

FIG. 8. This sketch, for the derivation of reconstruction error in

2D, shows the perspective of the two cameras overlaid on a com-

mon image plane and pinhole. See the text for more details.
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image plane. As seen in Fig. 9, the error in the re-

constructed depth of the object goes to infinity at the

baseline, which just happens to coincide with the left-

most view from the left camera. Despite this fact, the

vast majority of the field of view out to 8 km has an es-

timated reconstruction error of less than 2% (see the

left panel), and the vast majority of the field of view out

to 80 km has an estimated reconstruction error of less

than 20% (see the right panel).

In 3D, the behavior of the reconstruction error is more

nuanced. For cameras at sea level, the lines of sight to an

object can be collinear with the baseline only if the

object is at sea level. With the Miami cameras, which

are located near sea level, the lines of sight to clouds

are always pitched upward. As a result, the lines of sight

to clouds are never parallel to the baseline, even though

the baseline is in the field of view. This motivates a hy-

pothesis that the reconstruction error diminishes near

the leftmost field of view as the cloud height increases.

To check this, we can calculate maps of estimated re-

construction error using the full 3D projection matrices

for the Miami cameras. These error maps are shown in

Fig. 10 for hypothetical objects at altitudes of 2, 6, and

12 km. The estimated error in these maps is the frac-

tional change (in percent) of the reconstructed depth

due to a one-pixel error in the disparity. Since the im-

age planes are two dimensional, the plotted error is the

root-sum-square of the errors generated by a one-pixel

error in the x0 and y0 directions. The white regions are

those areas that are not visible by the two cameras; note

that the object’s altitude affects where it enters the field

of view. With regard to the hypothesis, we see that the

error in the leftmost field of view decreases as the height

of the reconstructed object increases, as predicted.

5. Validation against lidar

The preceding analysis gives some sense for the pre-

cision of the stereo reconstructions. To assess accuracy,

however, the reconstructions must be compared against

meteorological data from independent observations. In

this section, reconstructed cloud bases are compared

against data from lidar. In the next section, the recon-

structed horizontal motions of clouds are compared

against wind profiles from radiosondes.

For the validation of reconstructed heights, cloud bases

are calculated from three pairs of still images taken at

2025 UTC 8 April 2013, 1344 UTC 4 April 2013, and

1120 UTC 9 April 2013. At these times, we observed

stratocumulus (Sc), altocumulus (Ac), and cirrocumulus

(Cc) at heights of 2, 6, and 12km, respectively. For each

pair of images, authors Öktem and Romps manually
identified pairs of matching cloud-base feature points in
the two images. A mouse-controlled graphical user in-
terface (GUI) was designed for manual identification of
feature points and automatic reconstruction. Once a
point is selected in one image, the GUI displays the
corresponding epipolar line in the other image to serve

FIG. 9. For identical cameras in 2D, the theoretical error (%) of the reconstructed depth due to one pixel of error in the measurement of

the image position in the right camera’s image plane. The error is plotted for ranges of (left) 8 and (right) 80 km. The red (blue) circles and

red (blue) lines denote the right (left) camera and its field of view. Note that the error blows up near the baseline, which happens to

coincide with the leftmost field of view. Nevertheless, the reconstruction error is ,2% over the majority of the field of view out to 8 km,

and ,20% out to 80 km.
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as a guide for identifying the matching point. For each
pair of image points (i.e.,X0

l andX
0
r), themethod of direct

linear transformation is used to calculate the corre-

sponding world coordinate (i.e., X). For each of the three

cases, the two histograms of reconstructed heights ob-

tained from the data of Öktem and Romps were com-
pared and found to be very similar, suggesting that any
human error was either negligible or consistent. The
analysis below is performed on the union of these two
datasets for each case, resulting in 440, 416, and 307
stereo image pairs for 8, 4, and 9 April, respectively.
To validate that the stereo cameras are giving accu-

rate cloud-base altitudes, the histogram of stereo-

photogrammetric heights at the one instant in time are

compared against lidar data collected over a 20-min

period from 10min prior to 10min after the photographs

were taken. For the stratocumulus and altocumulus,

cloud-base heights were obtained with a Vaisala CL31

ceilometer that is collocated with the left camera as

part of the CAROb instrumentation. This ceilometer

reports cloud-base heights up to 7.5 km at 10-m resolu-

tion every 15 s. For the cirrocumulus, cloud-base heights

were obtained with a Sigma MPL-4B-IDS-532 micro-

pulse lidar also collocated with the left camera, which

reports backscattered intensity up to 15 km at 30-m

resolution every 15 s. The micropulse lidar samples

only zenith view with a 1.2-m footprint at 12km, associ-

ated with 100-mrad pulse width. From visual inspection,

the clouds in the lidar data were clearly above 11 km, so

twice the maximum logarithm of backscattered inten-

sity between 9 and 11 km was used as the threshold to

identify cloud bases. Since the thickness of the cirrus

layer is about 1 km, practically any method for iden-

tifying cloud bases gives the same answer; in fact, us-

ing all cloudy points—not just cloud bases—produces

a very similar distribution of height. Table 2 lists the

mean and standard deviation for the observed cloud

bases, obtained from both the stereo cameras and the

lidars.

On 8 April 2013, when the view was dominated by

stratocumulus, 440 pairs of feature points were sampled

from the pair of photographs taken at 2025 UTC. The

top panels of Fig. 11 show the locations of the feature

points in the two images. The reconstructed heights in-

cluded three outliers: one data point at 828m and two

data points at an altitude of around 8 km. Those points

were sampled from distant cumulus and cirrus (at depths

from the cameras exceeding 20 km), which are not cap-

tured by the ceilometer at that time. Those three sam-

ples are discarded from the results in Table 2 and Fig. 11.

FIG. 10. For theMiami cameras in 3D, the theoretical error (%) of the reconstructed depth due to one pixel of error (in both x0 and y0) in
the measurement of the image position in the right camera’s image plane. The error is plotted for hypothetical objects at altitudes of (left)

2, (middle) 6, and (right) 12 km. The red (blue) circles and red (blue) lines denote the right (left) camera and its field of view. Note that the

error blows up near the baseline, which happens to coincide with the leftmost field of view.White areas denote regions that are not within

the field of view of both cameras at that altitude. Note that, as predicted, the reconstruction error at the leftmost field of view decreases

with increasing height of the reconstructed object.

TABLE 2. Cloud-base statistics from the stereo cameras and ceilometers (Vaisala CL31 for Sc and Ac, and Sigma MPL for Cc).

Date Time (UTC) Cloud type

Distance from

right camera (km) Avg height (m)

stereo camera

Avg height (m)

ceilometer

Std height (m)

stereo camera

Std height (m)

ceilometerMin Max

8 Apr 2025 Sc 2.2 13 1804 1805 56 42

4 Apr 1344 Ac 5.6 34 5904 5913 174 173

9 Apr 1120 Cc 11 39 11 895 11 512 690 159
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The samples of the stratocumulus layer were located

2.2–13 km south of the right camera. As seen in the

middle row of Fig. 11, the histogram of stereo-camera

cloud-base heights closely resembles the histogram of

ceilometer cloud-base heights. The means of the two

distributions are 1804 and 1805m, respectively. The

standard deviations are 56 and 42m, respectively. The

bottom panel of Fig. 11 shows the spatial distribution

of reconstructed heights: the color of each point gives

the fractional deviation of that point’s height relative to

the mean of the ceilometer heights. These deviations

have no discernable spatial pattern other than the clump

FIG. 11. (top) (left and right) Stereo views of strato-

cumulus at 2025 UTC 8 Apr 2013. The red marks denote

the feature points. (middle left) Distribution of cloud-

base heights measured by the collocated ceilometer.

(middle right) Distribution of cloud-base heights mea-

sured by stereo reconstruction. (bottom) Feature points

distributed according to their reconstructed horizontal

position, with color denoting the fractional deviation of

the reconstructed height from the mean lidar height.
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of three high values near the leftmost field of view, where

we expect the reconstruction to be the poorest.

For 4 April 2013, when the view was dominated by

altocumulus, 416 pairs of feature points were sampled

from the pair of photographs taken at 1344 UTC. The

top panels of Fig. 12 display the feature points for this

pair of images. The altocumulus feature points range in

distance from 5.6 to 34 km south of the right camera.

As seen in the middle row of Fig. 12, the histogram of

stereo-camera cloud-base heights closely resembles the

histogram of ceilometer cloud-base heights. As is true

for all three cases, the number of points collected from

the instantaneous pair of stereophotographs is signifi-

cantly larger than the number of data points collected by

FIG. 12. As in Fig. 11, but for altocumulus observed at

1344 UTC 4 Apr 2013.
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lidar during the surrounding 20-min interval. This leads

to a superior sampling of the distribution of cloud-base

heights by the stereo cameras. Nevertheless, the means

and standard deviations of the two distributions are very

similar: the stereo cameras and the ceilometer report

means of 5904 and 5913m, and the standard deviations

of 174 and 173m, respectively. The bottom panel of

Fig. 12 suggests that the variance of reconstructed heights

increases somewhat up and to the left, as anticipated by

Fig. 10. It also appears that the altocumulus at distances

greater than 20km south of the cameras is lower in alti-

tude than the altocumulus closer to the cameras.

For 9 April 2013, when the view was dominated by

cirrocumulus, 307 pairs of feature points were sampled

from the pair of photographs taken at 1120 UTC. The

images used for this analysis, as well as the locations of

feature points, are shown in Fig. 13. The cirrocumulus

feature points range in distance from 11 to 39 km south

of the right camera. Unlike the previous two cases, the

histograms from the lidar and the stereo cameras have

some noticeable differences. As seen in the middle row

of Fig. 13, the histogram of stereo-camera cloud-base

heights is broader, extending to larger altitudes. At the

low end, the 10th percentile of the lidar and stereo-

camera distributions is quite similar: 11.3 and 11.1 km,

respectively. The 90% quantiles, on the other hand, are

quite different: 11.7 km for the lidar and 12.7 km for the

stereo cameras. The bottom panel of Fig. 13 suggests

a reason for this difference: the cirrocumulus appears to

slope upward in the southward direction. Since there is

no indication from the previous two cases of a positive

height bias for distant clouds, it is quite plausible, al-

though difficult to verify by other means, that the cir-

rocumulus was tilted in this way.

In stereo reconstruction, there are two main sources

of error: image-identification error and parametric un-

certainty.When identifying the pixel location of images in

the image plane (either manually or algorithmically),

some amount of error is to be expected, typically on the

order of one pixel. These errors generate a disparity er-

ror, which produces a reconstruction error proportional

to the distance from the camera, as depicted in Fig. 10.

A one-pixel inaccuracy in image-point locations results in

15, 133, and 565m of error in the mean of the measured

cloud-base heights of 8, 4, and 9 April, respectively; that

is, less than 1%, 3%, and 5%of the lidar-measured cloud-

base averages for each of the three cases, respectively.

With regard to parametric uncertainty, Table 3 lists the

uncertainties in the relative camera positions (x0,r 2 x0, l
and y0,r2 y0,l), camera heights (z0,r and z0,l), horizon line-

fitting parameters (ar and mr), and lens distortion cor-

rection parameters (k1, k2, and k3), and the corresponding

errors that these uncertainties would generate in the

mean reconstructed cloud-base heights. Uncertainty in

the absolute yaw angle, which is estimated from the

sun, does not affect the height reconstruction. The right

camera is mounted on the outer rails of a cylindrical

tower, and the left camera is mounted on the roof of

a building. Both of these sites can be clearly identified

in the aerial and satellite photographs provided by

Google Earth. The camera elevations are measured with

Google Earth’s 3D view enabled, whereas the x and y

positions are measured with 3D view disabled. The rela-

tive positions (x0,r 2 x0,l and y0,r 2 y0,l) vary by no more

than 3m when accounting for the range of possible

camera locations in the Google Earth images. Similarly,

an uncertainty of 0.5m is estimated for the heights (z0,r
and z0,l). The horizon parameters ar and mr are calcu-

lated by identifying two points close to the right and left

ends of the visible ocean horizon in the right camera

view, and by deriving the equation of the line passing

through these two points. A one-pixel uncertainty in

the location of these two points leads to a one-pixel

uncertainty in ar and a 0.002 uncertainty in the slope.

To estimate the error bound in lens distortion correc-

tion parameters, we re-executed the distortion-correction

algorithm several times by omitting one of the calibration

pattern images from the training set in each execution.

Table 3 lists these uncertainties and the typical mag-

nitudes of the errors that they generate for reconstructed

cloud-base heights on 8 April (Sc), 4 April (Ac), and

9 April (Cc). Note that the disparity error (i.e., the

image-identification error) is a random error, whereas

the uncertainty in the parameters leads to a bias. When

averaging over many reconstructed cloud-base heights,

the disparity error has a negligible effect on the mean.

The total error in this table is the square root of the sum

of all of the squared errors above (including the dis-

parity error), and so it should be thought of as the ex-

pected error for the reconstructed height of any one

feature; the expected error for the mean of the cloud-

base heights is smaller (i.e., it is obtained by excluding

the disparity error). Note from Table 3 that these un-

certainties have a negligible impact on the height re-

constructions for low-altitude clouds: the total error for

the height of an individual feature on a shallow cu-

mulus is only about 30m (less than 2% of the height).

As the cloud altitudes increase, the errors increase due

to the larger distances to the clouds being measured:

the total error for the height of a feature on a cirrocu-

mulus cloud is about 900m (8% of the height).

6. Validation against radiosondes

To compare velocities against radiosonde measure-

ments, the horizontal speeds of stratiform clouds in the
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east and north directions (u and y, respectively) are

calculated as

u5
1

N
�
N

i51

xi(t1 dt)2 xi(t)

dt
(22)

y5
1

N
�
N

i51

yi(t1 dt)2 yi(t)

dt
, (23)

where [xi(t), yi(t)] is the horizontal position of feature

point i at time t. For each of the four cloud layers studied

FIG. 13. As in Fig. 11, but for cirrocumulus at

1120 UTC 9 Apr 2013.
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(one each on 4 and 8 April, and two on 9 April), N

independent cloud features were identified by Öktem
from several frames over a given time interval, and those
same features were identified in images dt later. The

number of features N used for each case is listed in

Table 4. For each cloud layer, a fixed dt was used.

The interval dt was chosen subjectively for the fol-

lowing reasons. Recall from section 4 that the error in

the reconstructed positions increases with distance be-

tween the cameras and the observed feature. When dt

is small and the distance to the feature is large, the

position-estimation error can exceed the distance the

cloud feature travels in dt and results in low accuracy

in velocity estimation. On the other hand, if dt is too

large, then the cloud feature may exit the field of view,

be obscured by another cloud, or evaporate in this

time period. Hence, it was not possible to define a

general rule for setting dt. A low value of dt5 30 s was

used for the low-level clouds of 8 and 9 April, whose

feature points were in the range 2–5 km from the

cameras. For the high-altitude clouds of 4 and 9 April,

whose feature points were at distances exceeding 8 km

from the cameras, a longer time interval of dt 5 300 s

was used.

The results are listed in Table 4 for the altocumulus

layer of 4 April, the stratocumulus layer of 8 April, and

the cirrocumulus and shallow cumulus layers of 9 April.

For each of the four cloud layers, this table reports the

mean of the height, u, and y of the sampled feature

points, as well as the standard deviations of those dis-

tributions. These data are plotted in Fig. 14 along with

radiosonde measurements from the nearby Miami air-

port (obtained from the website of the Department of

Atmospheric Science at the University of Wyoming,

http://weather.uwyo.edu/upperair/sounding.html). The

location of the radiosonde releases is about 10km inland

from the cameras. The radiosondes are launched twice

daily, at 1105 UTC (local morning) and 2305 UTC (local

evening). Figure 14 displays the morning soundings for

4 and 9 April, and the evening sounding for 8 April. It is

not always possible to observe clouds contemporane-

ously with radiosonde releases, so we picked the times

as close to the radiosonde release times as we could.

These radiosonde releases are about 2.5 h before the

stereo data on 4 April, 2.5 h after the stereo data on

8 April, and nearly contemporaneous with the stereo

data on 9 April. In spite of the fact that the radiosonde

data are collected at a somewhat different time and

location than the stereo data, the agreement between

the reconstructed winds and the radiosonde winds is

quite good.

The error bars in Fig. 14 show the standard deviations

in the measurements; that is, they correspond to the two

rightmost columns of Table 4. Table 5 lists the expected

errors in the horizontal velocities caused by parametric

uncertainties and image-identification errors. From the

last row of this table, we see that the relative errors are

significantly larger for the y speeds than for the u speeds.

This can be understood as follows. Since the cameras

face approximately south, the y speeds correspond to

motion roughly parallel with the lines of sight, whereas

the u speeds correspond to motion roughly perpen-

dicular to the lines of sight. With a single camera, we

can readily detect motions that are transverse to the

line of sight, but we cannot detect any motion of a point

moving along the line of sight. With a second camera,

the motion of a point moving along the first camera’s

line of sight can be detected, but the displacement in

TABLE 3. The impacts of parametric uncertainties (first seven

data rows) and image-identification error (disparity) on the re-

constructed cloud-base heights. See Table 1 for the definition of the

listed parameters. The total error for the reconstructed height of

any one feature is given by the root-sum-square of all of the errors,

and is rounded to the first significant digit. The relative error in the

last row is obtained by dividing by the mean heights from Table 2

and rounding to the first significant digit.

Parameter Uncertainty

Absolute error (m)

Apr 8 Apr 4 Apr 9

x0,r 2 x0,l 3m 5 46 215

y0,r 2 y0,l 3m 9 58 219

z0,r 0.5m 7 53 226

z0,l 0.5m 6 47 196

ar 1 pixel 11 84 345

mr 0.002 12 64 251

k1, k2, k3 0.001, 0.005, 0.001 9 48 252

Disparity 1 pixel 15 133 565

Total error (m) 30 200 900

Total error/mean height (%) 2 3 8

TABLE 4. Horizontal velocities of cloud bases measured by stereo reconstruction.

Date Cloud type

Time interval

(UTC) dt (s) N

Avg height

(m)

Avg u

(m s21)

Avg y

(m s21) Std height Std u Std y

Apr 4 Ac 1334–1353 300 20 5916 135 0.8 1.1

Apr 8 Sc 2015–2036 30 30 1817 32 0.9 1.3

Apr 9 Cu 1111–1134 30 20 741 54 0.7 2.9

Apr 9 Cc 1110–1124 300 20 11 344 522 2.1 2.4
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FIG. 14. Reconstructed horizontal velocities from Table 4 (red circles) compared with radiosonde wind profiles

from the nearby Miami airport (black circles). The blue error bars denote the standard deviations of height and

velocity among the sampled feature points.
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the image plane is small compared to the displacement

of a point moving with the same speed transverse to the

first camera’s line of sight. This reduces the signal-to-

noise ratio when calculating speeds from displacements

in the image planes. Therefore, the speeds of objects

moving in the north–south direction are harder to mea-

sure accurately in our setup than the speeds of objects

moving in the east–west direction.

Comparing the last two columns of Table 4 to the

second-to-last row of Table 5, we see that the standard

deviations of the measured speeds for the 9 April Cu

are significantly larger than the total expected errors for

that case. The video sequence of 9 April shows that the

sampled cumulus clouds are active, and that the features

are not very sharp due to the early-morning light not yet

illuminating those clouds (see the low-altitude and gray-

looking cumuli in Fig. 13). These two conditions de-

teriorate the performance of feature identification and

matching between contemporaneous and consecutive

frames, and this leads to the large standard deviation of

velocity measurements for the 9 April cumuli.

7. Summary

This paper presents a method for performing stereo-

photogrammetry of clouds over the open ocean. By

eliminating the requirement of landmarks in the field of

view, this approach widens the potential uses of ster-

eophotogrammetry to the study of tropical oceanic con-

vection. The key to calibrating without landmarks is to

tune the calibration parameters to minimize the sum of

squared distances (in the image plane) of 1) image points

from their respective epipolar line for a collection of

random objects (clouds, birds, ships, etc.), and 2) the

actual horizon from the projected horizon.

In the field, the location of cameras is often dictated by

practical constraints, such as the availability of electrical

power and Internet connectivity. This can result in the

baseline—the line connecting the two cameras—being

close to or within the field of view. As shown here, the

precision of the reconstruction suffers the closer a cloud

feature is to the baseline. Precision also degrades with

distance from the camera, as expected.

Despite these limitations, the accuracy of the stereo

reconstruction is quite good. The stereo-reconstructed

and lidar-measured cloud-base heights show good agree-

ment, as do the stereo-reconstructed and radiosonde-

measured winds. An error analysis leads to the conclusion

that the uncertainty in the reconstructed heights of shal-

low clouds is less than 2%, with the uncertainty increasing

with altitude to values as large as 8% for cirrocumulus.

Although the comparisons with lidar and radiosondes did

not reveal any obvious biases in the reconstructions, a

more detailed comparison is precluded by the fact that

the lidar is not collocated with the imaged clouds, and the

radiosonde releases are neither collocated nor contem-

poraneous. A more definitive statement on the accuracy

will require new measurements, such as images collected

by a third camera or contemporaneous measurements by

a scanning cloud radar.

Like anyobservational technique, stereophotogrammetry

has its limitations. For example, data collection can be

impeded when the view of the clouds being investigated

is blocked by other clouds. This occlusion can be an

occasional spoiler when trying to track a cloud contin-

uously in time. Environmental light can also impact the

quality of photogrammetric measurements. Low light

can result in a high signal-to-noise ratio and excess

light can result in overexposure of images, both of

which deteriorate the accuracy of feature matching.

Nevertheless, even with basic off-the-shelf cameras,

stereophotogrammetry can provide a large amount of

instantaneous data for clouds in a wide field of view.

For example, the development of a deep-convective

TABLE 5. As in Table 3, but for horizontal velocities. The relative error in the last row is obtained by dividing by the mean speeds from

Table 4 and rounding to the first significant digit.

Parameter Uncertainty

Absolute error (m s21)

Apr 4 Ac Apr 8 Sc Apr 9 Cu Apr 9 Cc

u y u y u y u y

x0,r 2 x0,l 3m 0.13 0.19 0.01 0.02 0.01 0.02 0.42 0.59

y0,r 2 y0,l 3m 0.17 0.09 0.01 0.04 0.02 0.02 0.51 0.24

z0,r 0.5m 0.19 0.04 0.01 0.02 0.01 0.02 0.58 0.07

z0,l 0.5m 0.16 0.03 0.01 0.03 0.01 0.03 0.53 0.07

ar 1 pixel 0.26 0.04 0.01 0.05 0.02 0.03 0.87 0.11

mr 0.002 0.21 0.04 0.01 0.04 0.02 0.04 0.67 0.10

k1, k2, k3 0.001, 0.005, 0.001 0.25 0.31 0.11 0.18 0.02 0.27 0.75 0.95

Disparity 1 pixel 0.32 0.87 0.32 1.10 0.11 0.42 1.42 3.01

Total error (m s21) 0.6 1.0 0.3 1.0 0.1 0.5 2.0 3.0

Total error/mean speed (%) 3 30 10 20 0 10 6 200
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turret 20 km away can be imaged with a few tens of

meters resolution and a 0.1-Hz frame rate. Although

manual tracking of features over image sequences is

labor intensive and time consuming, algorithms from

the field of computer vision should make it possible to

automate the feature identification and matching pro-

cess, enabling the processing of vast amounts of data in

seconds.
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