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ABSTRACT

For an adiabatic parcel convecting up or down through the atmosphere, it is often assumed that its moist static

energy (MSE) is conserved. Here, it is shown that the true conserved variable for this process is MSE minus

convective available potential energy (CAPE) calculated as the integral of buoyancy from the parcel’s height to its

level of neutral buoyancy and that this variable is conserved even when accounting for full moist thermodynamics

and nonhydrostatic pressure forces. In the calculation of a dry convecting parcel, conservation of MSE minus

CAPE gives the same answer as conservation of entropy and potential temperature, while the use of MSE alone

can generate large errors. For a moist parcel, entropy and equivalent potential temperature give the same answer

as MSE minus CAPE only if the parcel ascends in thermodynamic equilibrium. If the parcel ascends with a

nonisothermal mixed-phase stage, these methods can give significantly different answers for the parcel buoyancy

because MSE minus CAPE is conserved, while entropy and equivalent potential temperature are not.

1. Introduction

One of the most fundamental and ubiquitous calcu-

lations in atmospheric science is the calculation of the

properties of an adiabatically lifted air parcel—that is, a

parcel lifted adiabatically, vertically, and rapidly enough

so that the environment through which it rises can be

considered time invariant. This calculation is performed

thousands of times per day at weather centers around

the world to quantify atmospheric instability and storm

potential. It is also calculated many millions of times per

day on supercomputers that are forecasting next week’s

weather and next century’s climate. Despite the im-

portance of this process, there is no agreement on how it

should be calculated. The most common approach is to

use conservation of moist static energy (MSE), which is

defined as the sum of sensible enthalpy, latent enthalpy,

and gravitational potential energy; see Eqs. (5) and (6)

below for precise expressions. But, it is widely known

that MSE is only approximately conserved for an adia-

batically lifted parcel, and there seems to be no con-

sensus on what alternative should be used.

An alternative that we explore here is the difference

between MSE and convective available potential energy

(CAPE) calculated as the integral of parcel buoyancy

from the parcel’s height to its level of neutral buoyancy

(LNB). Riehl and Malkus (1958) were the first to derive

the conservation of MSE minus CAPE (MSE 2 CAPE)

for an adiabatically lifted parcel [see their Eq. (10)] but

the approximations in that derivation neglected the effect

of water phase on density, pressure, and heat capacity.

They also stated that MSE 2 CAPE is approximately

conserved only when the parcel buoyancy is small; as

shown here, this is incorrect.

Several years later, Madden and Robitaille (1970) and

Betts (1974) observed that the integral of a parcel’s

buoyancy can explain the difference in the level of its

neutral buoyancy predicted using conservation of MSE

versus conservation of equivalent potential temperature

ue. Levine (1972) tried to refute this claim, but did so

using a fallacious derivation (Madden and Robitaille

1972). Most importantly, none of these derivations ac-

counted for the virtual effects of water and the de-

pendence of heat capacity on composition.

The goal of this note is to show, with the full effects of

water included, that MSE 2 CAPE is conserved for an

adiabatically lifted parcel so long as its buoyancy is defined

with respect to the hydrostatic state of themean large-scale

environment. We will show that this conservation is exact
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even in the presence of nonhydrostatic pressure-

perturbation forces that convert CAPE to turbulent en-

ergy and wave energy in the environment. While entropy

and equivalent potential temperature are conserved for

adiabatic parcels in thermodynamic equilibrium, we em-

phasize that MSE 2 CAPE is conserved for adiabatic

parcels that are either in equilibrium (e.g., a single con-

densed phase) or in disequilibrium (e.g., a nonisothermal

mixed-phase stage, as occurs during theBergeron process).

In contrast, entropy and equivalent potential temperature

are not conserved for disequilibrium processes. We argue,

therefore, that MSE 2 CAPE is the true conserved vari-

able for an adiabatically lifted parcel and that it—and not

MSE, entropy, or equivalent potential temperature—

should be used to calculate the parcel’s properties.

2. Theory

For a moist atmosphere, the governing equation for

internal energy (i.e., the first law of thermodynamics) is

r
d

dt
[cym(T2Ttrip)1 qyE0y 2qsE0s]52p$ � u1Q ,

(1)

where p is the pressure, u is the velocity, and Q is the

external heating with dimensions of power per volume.

Here, cym is the heat capacity at constant volume formoist

air, which is given in terms of mass fractions and heat

capacities of dry air (subscript a), water vapor (y), liquid

water (l), and solid water (s) as cym 5 qacya 1qycy y 1
qlcyl 1 qscys. Since the term in square brackets is the

specific internal energy, we see that the constantE0y is the

difference in specific internal energy between water vapor

and liquid at the triple-point temperature (Ttrip5 273.16K)

andE0s is the difference in specific internal energy between

water liquid and solid at the triple-point temperature.

Adding rd(p/r)/dt to both sides turns the rd(cymT)/dt

into rd(cpmT)/dt, where cpm is the heat capacity at

constant pressure for moist air, and, with help from the

continuity equation (›r/›t1$ � ru5 0), turns the2p$ � u
into dp/dt. Since the specific gas constant of moist

air Rm equals qaRa 1 qyRy , and since dqa/dt is zero for

an adiabatic parcel, the Lagrangian derivative of

RmTtrip 2qyRyTtrip is zero. Subtracting this form of zero

from the left-hand side then gives

r
d

dt
[cpm(T2Ttrip)1 qy(E0y 1RyTtrip)2 qsE0s]

5
dp

dt
1Q . (2)

This is the governing equation for enthalpy. Note that

E0y 1RyTtrip is the difference in specific enthalpy between

water vapor and liquid at the triple-point temperature.

Let us now consider a parcel that is ascending through

an environment whose large-scale mean pressure and

density are steady and hydrostatic. Let us denote that

large-scale environmental pressure and density by pe(z)

and re(z); by hydrostatic balance, ›pe/›z 5 2reg. Note

that we do not require the flow to be hydrostatic at small

scales or in the vicinity of the parcel. Instead, we allow

there to be substantial pressure perturbations p0, so that

p 5 pe 1 p0. This means that there may be significant

pressure-perturbation forces (2$p0) on the parcel. We

will, however, assume that the pressure at the location of

the parcel is equal to pe; this is the usual assumptionmade

when calculating the properties of a lifted parcel. With

these two assumptions, we can write dp/dt as dpe/dt 5
w›pe/›z 52wgre. Assuming the parcel is adiabatic (Q5
0), dividing by rw, and writing gre/r as b 1 g, where

b 5 g(re/r 2 1) is the parcel’s buoyancy, we get

d

dz
(MSE2CAPE)5 0, (3)

where CAPE is the integral of buoyancy from the height

z of the parcel to some fixed reference height ztop,

CAPE5

ðz
top

z
dz0 b , (4)

and MSE can be defined in one of two equivalent ways:

MSE5 cpm(T2Ttrip)1 qy(E0 y 1RyTtrip)

2 qsE0s1 gz, or (5)

MSE5 [qacpa1 (qy 1 ql 1 qs)cyl](T2Ttrip)

1 qyLc2 qsLf 1 gz , (6)

where Lc 5E0 y 1RyT1 (cy y 2 cyl)(T2Ttrip) is the la-

tent heat of condensation and Lf 5E0s 1 (cyl 2 cys)

(T2Ttrip) is the latent heat of fusion. The implication of

Eq. (3) is that an adiabatic parcel’s MSE and CAPE

decrease with height at the same rate. Related expres-

sions have been obtained in the anelastic approximation

applied to the ocean (Ingersoll 2005) and the atmo-

sphere (Pauluis 2008).

The upper bound of integration in Eq. (4) is somewhat

arbitrary. To be as consistent as possible with standard

definitions of CAPE, it can be chosen to be a level of

neutral buoyancy. For our purposes, all that really

matters is that the upper bound is a constant—that is,

that it does not change as the parcel is lifted. Note that

Eq. (3) is used to calculate parcel ascent, and a constant

upper bound drops out in that equation. Also, note that

there is no unit step function of buoyancy in the in-

tegrand of Eq. (4) that would restrict the integral to
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regions of positive buoyancy, as is often the case in other

definitions of CAPE.

The assumptions used in deriving Eq. (3) are no

more restrictive than the assumptions used when

calculating parcel properties with conservation of

equivalent potential temperature ue. When using ue to

calculate the parcel’s temperature at some height, the

pressure of the parcel at that height must be known,

and it is always assumed that p 5 pe. As for the as-

sumption of large-scale hydrostatic balance, this is

essentially guaranteed for averages of environmental

pressure and density taken over scales much larger

than the scale height. Note that MSE 2 CAPE is

conserved even if the parcel does not convert CAPE

to its own kinetic energy (KE), but, instead, dissipates

CAPE to environmental turbulence and wave energy.

In other words, MSE 1 KE is not conserved, but

MSE 2 CAPE is.

Why isMSE itself not conserved? Consider Eq. (2) for

an adiabatic parcel. Dividing by r, the term (1/r)dp/dt

can be written as the term gz in MSE only if the density

of the parcel r equals the density of the mean large-scale

environment re. If the parcel is buoyant (i.e., 1/r. 1/re),

then (1/r)dp/dt is larger in magnitude than (1/re)dp/dt,

and this saps more specific enthalpy from the parcel

than would be predicted by geopotential alone. In other

words, for a given change in pressure, a parcel loses

more specific enthalpy the lighter it is.

3. Examples

The adiabatic ascent of an air parcel is typically cal-

culated using either conservation ofMSE, entropy, or ue.

Although ue has been written in many different ways

with varying degrees of completeness and accuracy (e.g.,

Simpson 1978; Bolton 1980; Hauf and Höller 1987;

Marquet 2011), ue is simply the exponential of entropy

(Romps and Kuang 2010). Therefore, there are really

just two distinct methods: conservation of MSE and

conservation of entropy. We will now consider four ex-

amples that illustrate the errors in parcel buoyancy that

are caused by incorrectly assuming that MSE is con-

served or, for a parcel with disequilibrium mixed-phase

microphysics, by assuming that entropy is conserved.

a. Dry case with constant-lapse-rate environment

Consider a dry environment with a dry-adiabatic lapse

rate. We can calculate the temperature excess for a dry

parcel rising through that environment using conserva-

tion of MSE minus CAPE:

d

dz
(MSE2CAPE)5 0, (7)

MSE5 cpaT1 gz, and (8)

CAPE5

ðz
top

z
dz0 g

T2Te

Te

. (9)

Denoting the environment’s surface air temperature by

T0, the environmental temperature profile is Te 5 T0 2
gz/cpa. Note that this solution satisfies Eq. (7) with

CAPE 5 0, confirming that g/cpa is the lapse rate for an

atmosphere in which displaced parcels are neutrally

buoyant. For g 5 10m s22, cpa 5 1000 J kg21K21, and

T0 5 300K, the temperature of the environment de-

creases linearly with height from 300K at the surface to

0K at the top of the atmosphere, which is at 30 km.

Now, consider a buoyant parcel in this environment. If

we mistakenly used conservation of MSE, then we

would conclude that the parcel’s lapse rate is, like the

environment, equal to g/cpa, thereby maintaining a

constant temperature excess as it rises. This is incorrect.

Defining the temperature excess of a buoyant parcel as

DT 5 T 2 Te, we can write Eq. (7) for the parcel as

cpa
d

dz
DT1 b5 0.

This tells us that the parcel’s temperature excess de-

creases with height. Since b 5 gDT/Te, we can solve for

DT to find

DT(z)5DT0

 
12

gz

cpaT0

!
,

where DT0 is the parcel’s temperature excess at the sur-

face. Therefore, we see that the parcel’s temperature

excess decreases linearly with height from DT0 at the

surface to zero at the top of the atmosphere. For example,

at 15km, DT is exactly half of its original value. This case

is illustrated in the left panel of Fig. 1 for a largeDT0. This

choice of DT0 is made so that both the temperature

profiles and the parcel buoyancies are readily visible

without the need for a skew-T axis; nothing about Fig. 1

changes qualitatively for a smaller DT0.

For a dry parcel, conservation of MSE2 CAPE must

give the same answer as conservation of potential tem-

perature. This is easy to prove for this example. Both the

environment and the parcel have a constant potential

temperature (i.e., independent of height). At any given

height, the parcel and environment have the same

pressure, so the ratio of the parcel’s potential tempera-

ture and the environment’s potential temperature is

simply (T 1 DT)/T 5 1 1 DT/T. Since the potential

temperatures are constant, the ratio DT/T must be

constant. Since T goes to zero linearly with height, so
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must DT. This completes the proof. In Fig. 1, the po-

tential temperature is written as the equivalent potential

temperature ue since ue equals u for a dry parcel; the

appendix provides the precise definition of ue.

b. Dry case with isothermal environment

Let us now consider a dry parcel rising through a dry,

isothermal atmosphere. Since the air is dry, Eqs. (7)–

(9) still hold. Since the environment is isothermal, Te is

independent of height and we can write Eq. (7) for the

parcel as

cpa
d

dz
DT1 g1

g

Te

DT5 0.

The solution to this equation is

DT5 (Te1DT0)e
2gz/c

pa
T
e 2Te , (10)

where DT0 is the parcel’s temperature excess at the sur-

face. We see that the temperature excess decreases with

height, but not linearly. This solution is illustrated in the

right panel of Fig. 1. For a parcel that is buoyant at the

surface (i.e.,DT0. 0), then the level of neutral buoyancy is

zLNB5
cpaTe

g
log

�
11

DT0

Te

�
. (11)

For DT0�Te, zLNB’ cpaDT0/g. In general, the parcel’s

temperature decays toward zero with a scale height

of cpaTe/g. We can compare this to the assumption

of conservation of MSE alone, which would predict

DT5DT02 gz/cpa as well as the nonsensical result that

the parcel’s absolute temperature would be negative

above a height equal to cpa/g times its temperature at

the surface.

Of course, we can confirm in this case that conservation

ofMSE2CAPE gives the same result as conservation of

potential temperature. Since the environmental pressure

profile is pe 5p0 exp(2gz/RaTe), where p0 is the surface

pressure, the parcel’s potential temperature at height

z is u5 (Te 1DT)(p0/pe)
Ra/cpa 5 (Te 1DT)egz/cpaTe . Since

u 5 Te 1 DT0, this can be solved to give Eq. (10).

c. Moist case without ice

For the first of two examples with moisture, we will

simplify things by eliminating the solid phase of water.

This is effectively accomplished by setting cys equal to cyl
and settingE0s to zero in the definition ofMSE and in the

equations in the appendix. For the environmental profile,

we choose a moist adiabat with p5 1 bar, T5 300K, and

RH5 1 at z5 0. This environmental profile is calculated

using conservation of MSE 2 CAPE with CAPE set to

zero (so that a parcel of air displaced from the environ-

ment will have zero buoyancy). In this case, since there is

no ice and a thermodynamic equilibrium between water

vapor and liquid is strictly obeyed, conservation of moist

entropy gives the same environmental profile.

Next, consider a buoyant, saturated parcel of air that

starts at the surface with T 5 300.5K. The left panel of

Fig. 2 shows the profile of buoyancy (expressed as a

virtual-temperature anomaly) for this parcel as it is lifted,

calculated in three different ways: using conservation of

MSE 2 CAPE (solid), conservation of moist entropy

FIG. 1. (left) Temperature profiles for an environment with a surface temperature of 300K and a lapse rate of g/cpa,

an adiabatic parcel with a temperature at the surface of 600K calculated correctly using conservation of MSE 2
CAPE or conservation of ue, and the temperature of the same parcel calculated incorrectly using conservation of

MSE. (right) As in (left), but for an isothermal atmosphere with a temperature of 300K.
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(dashed; overlapping the solid curve, so it is difficult to

see), and conservation of MSE (dotted). Since the parcel

is always in thermodynamic equilibrium, conservation of

ue gives the correct answer, as seen from the overlap of

the dashed and solid curves. Conservation of MSE,

however, overestimates the buoyancy of the parcel by

as much as 1K, which is substantial for a parcel whose

buoyancy is in the range of 0.5–1.5K.

d. Moist case with mixed-phase condensates

We now include ice by using the correct values for cys
andE0s. If a cloud parcel starts at a warm cloud base and

rises through the atmosphere in thermodynamic equi-

librium, then it experiences three stages. It begins in a

state of thermodynamic equilibrium between water va-

por and liquid. Then, at a temperature of 273.16K, the

parcel begins a stage of isothermal ascent in which va-

por, liquid, and ice are in thermodynamic equilibrium at

the triple point. The depth of this isothermal stage is

approximately qlE0s/g, where ql is the mass fraction of

liquid water when the parcel first hits a temperature of

273.16K. For ql 5 0.02, this is a depth of 600m. At the

end of the isothermal stage, all of the condensates have

been converted to ice and the parcel enters its third

stage, in which vapor and ice are in equilibrium.

In reality, this is not how the physics of clouds works.

Instead of a;600-m isothermal mixed-phase stage, there

is a multikilometer nonisothermal mixed-phase stage in

which vapor, liquid, and ice are in disequilibrium, typically

with the vapor mass fraction in between saturation with

respect to liquid and saturation with respect to ice. This

causes vapor to diffuse down a vapor gradient, and that

diffusion is a source of entropy (Pauluis and Held 2002).

Therefore, adiabatic parcels that ascend with a multi-

kilometer mixed-phase region do not conserve entropy.

This means that entropy (or, equivalent potential tem-

perature) should not be used to calculate adiabatic parcel

ascent. Fortunately, MSE 2 CAPE is conserved in these

cases. MSE 2 CAPE is conserved because it is based on

conservation of energy, and the only sources and sinks

of energy for an adiabatic parcel are pressure work

(both expansion work and work against the pressure-

perturbation drag force), and both of those are properly

accounted for in MSE 2 CAPE no matter how out of

thermodynamic equilibrium the parcel is. Therefore,

MSE 2 CAPE is the true conserved variable for an

ascending adiabatic parcel.

The right panel of Fig. 2 illustrates the failure of MSE

conservation and ue conservation in the case of a parcel

with a disequilibrium mixed-phase stage. The environ-

mental profile is calculated from conservation of MSE2
CAPE with CAPE set to zero (so that displaced envi-

ronmental parcels are neutrally buoyant) and p 5 1 bar,

T5 300K, andRH5 1 at z5 0. Themixed-phase region

is defined to start at 273.16K and end at 240K. In be-

tween those two temperatures, the fraction of conden-

sates in the ice phase transitions to one as a linear

function of temperature. Similarly, the vapor mass frac-

tion is set to a linear weighting of liquid and solid satu-

ration vapor mass fractions; see the appendix for the

FIG. 2. (left) Profiles of buoyancy for a buoyant moist parcel rising adiabatically through a moist-adiabatic envi-

ronment in which neither has solid water (so that there is nomixed-phase thermodynamic disequilibrium). The profiles

are shown as calculated correctly using either conservation of MSE2 CAPE (solid) or conservation of ue (dashed) or

calculated incorrectly using conservation of MSE (dotted). (right) As in the left panel, but for an atmosphere in which

parcels have amixed-phase stage between a temperature of 273.16K and a temperature of 240K. In this case, entropy is

not conserved, so calculating the parcel ascent using conservation of entropy gives the wrong answer.
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relevant equations. The lifted parcel is subjected to these

same rules of mixed-phase disequilibrium, and the parcel

is initialized at z 5 0 with T 5 300.5K and RH 5 1.

As seen in the right panel of Fig. 2, the profiles of

buoyancy calculated using conservation of MSE and con-

servation of ue are both erroneous, deviating from the

correct profile (calculated by conservation of MSE 2
CAPE) by as much as 0.3–0.9K. The profile calculated

using conservation ofMSE gives buoyancy that is too high

because it misses the reduction ofMSE due to CAPE. The

profile of buoyancy calculated using conservation of en-

tropy gives buoyancy that is too low because it misses the

fact that the mixed-phase disequilibrium increases en-

tropy. Note that the profile of buoyancy calculated by

conservation of ue is correct up until the beginning of the

mixed-phase layer, which begins around 6km.

4. Summary

We have shown that MSE 2 CAPE, with CAPE cal-

culated as the integral of parcel buoyancy up to the

parcel’s height, is conserved for an adiabatically lifted

parcel. The assumptions going into this conservation law

are nomore restrictive than the assumptions usually made

for parcel calculations. In particular, the buoyancymust be

calculated with respect to the density profile of the mean

large-scale environment, which, by virtue of being large

scale, is hydrostatic. As in any other method for calculat-

ing parcel properties, we assume that the pressure of the

parcel is equal to the mean large-scale environmental

pressure at the same height. Aside from this equality of

pressures, no assumption is made about the pressure

perturbations; arbitrary pressure-perturbation forces (e.g.,

form drag and wave drag) are allowed and have no impact

on the conservation of MSE 2 CAPE. In addition, no

assumption is made about thermodynamic equilibrium.

Thermodynamic disequilibrium, such as a nonisothermal

mixed-phase stage, will alter a parcel’s entropy, but has no

effect on MSE 2 CAPE.

Note that calculating parcel ascent using the conservation

ofMSE2CAPE is nomore difficult than calculating parcel

ascent using (the incorrect) conservation of MSE. Taking

d/dz of MSE2 CAPE and setting it to zero, we get

d

dz
MSE52b , (12)

where MSE is the moist static energy of the parcel at

height z, given by either Eq. (5) or (6), and b is the

buoyancy of the parcel at height z. If we know the state

of the parcel at height z (i.e., its temperature and its

mixing ratios of water vapor, liquid, and solid), then we

knowMSE and b. Equation (12) then tells us theMSE at

height z 1 Dz, for some small Dz. Using pressure

equality of the parcel and its environment, along with

whatever assumptions we are making about the appor-

tionment of water among the three phases [e.g., a

mixed-phase transition from liquid condensates to solid

condensates as a linear function of temperature as in

Romps and Kuang (2010)], we can use this value of

MSE to calculate the parcel’s temperature at z 1 Dz.
We then know its buoyancy and can proceed to z 1
2Dz. With this simple procedure, we can integrate the

parcel’s properties upward in height.

Although the discussion in this paper has focused on

adiabatic parcels, these results are just as important for

entraining parcels or parcels that lose condensates by

fallout. In the numerical calculation of such parcels, the

ascent or descent is typically split into a sequence of serial

processes. For example, the calculation of an entraining

parcel with condensate falloutmayproceed as a loop over

the following processes with one iteration for each small

height increment: entrainment at constant pressure, fall-

out at constant pressure, and adiabatic lifting. Regardless

of the processes performed at constant pressure, the

lifting from one pressure to the next should be performed

using conservation of MSE 2 CAPE.

Acknowledgments. This work was supported by the

Scientific Discovery through Advanced Computing (Sci-

DAC) program funded by theU.S. Department of Energy

Office of Advanced Scientific Computing Research and

Office of Biological and Environmental Research and by

the U.S. Department of Energy’s Earth SystemModeling,

an Office of Science, Office of Biological and Environ-

mental Research program under Contract DE-AC02-

05CH11231. The author is grateful to three reviewers

and the editor, all of whom provided input that improved

this manuscript.

APPENDIX

Moist Thermodynamics

The following definition of equivalent potential

temperature,

ue 5T

�
p0
pa

�R
a
/c

pa

 
T

Ttrip

!(r
y
c
py
1r

l
c
yl
1r

s
c
ys
)/c

pa

3

�
ptrip

py

�r
y
R

y
/c

pa

e(rys0y2r
s
s
0s
)/c

pa , (A1)

is exactly conserved when moist entropy is conserved

(Romps and Kuang 2010). Here, ry, rl, and rs are the

mixing ratios (i.e., mass permass of dry air) of vapor, liquid,
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and solid, respectively. The constant s0y 5E0y/Ttrip 1 Ry is

the difference in specific entropy between water vapor and

liquid at the triple point, and s0s 5E0s/Ttrip is the difference

in specific entropy between water liquid and solid at the

triple point.

By equating the Gibb’s free energies of water vapor

and liquid, the saturation vapor pressure over liquid is

found to be (Romps 2008)

py*
,l 5 ptrip

 
T

Ttrip

!(c
py
2c

yl
)/R

y

3 exp

"
E0 y 2 (cy y 2 cyl)Ttrip

Ry

 
1

Ttrip

2
1

T

!#
. (A2)

By equating the Gibb’s free energies of water vapor

and solid, the saturation vapor pressure over solid is

found to be

py*
,s 5 ptrip

 
T

Ttrip

!(c
py
2c

ys
)/R

y

3 exp

"
E0y 1E0s2 (cy y 2 cys)Ttrip

Ry

 
1

Ttrip

2
1

T

!#
.

(A3)

We can then rearrange Eqs. (A2) and (A3) to give ex-

pressions for the saturation vapor mass fraction as a

function of p, T, and total water (qy 1 ql 1 qs),

qy*
,l 5 (12 qy 2 ql 2qs)

Ra

Ry

8<
: p

ptrip

�
Ttrip

T

�(c
py
2c

yl
)/R

y

3 exp

"
2
E0y 2 (cy y 2 cyl)Ttrip

Ry

 
1

Ttrip

2
1

T

!#
2 1

)21

and

(A4)

qy*
,s 5 (12 qy 2 ql 2 qs)

Ra

Ry

8<
: p

ptrip

�
Ttrip

T

�(c
py
2c

ys
)/R

y

3 exp

"
2
E0y 1E0s 2 (cy y 2 cys)Ttrip

Ry

 
1

Ttrip

2
1

T

!#
2 1

)21

.

(A5)

In sections 3c and 3d, the parcel is given a non-

isothermal mixed-phase stage by defining its mass

fractions by

qy* 5 [12 j(T)]qy*
,l 1 j(T)qy*

,s ,

ql 5 [12 j(T)](ql 1 qs), and

qs 5 j(T)(ql 1 qs) ,

with j prescribing a linear transition from liquid con-

densates to solid condensates between Ttrip 5 273.16K

and 240K:

j5

8>>>>><
>>>>>:

1 T# 240K

Ttrip 2T

Ttrip 2 240K
240K,T,Ttrip

0 T$Ttrip

.
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